

Agriculture's Role in Mitigation of Greenhouse Gases

Charles W. Rice, Kansas State University Susan Capalbo, Montana State University Jerry Hatfield, USDA-ARS

K-State Research and Extension

Potential CO₂ Stabilization Options

	Rapidly Deployable	Not Rapidly Deployable
Minor Contributors <0.2 PgC/y	Biomass co-fire electric	 Integrated photovoltaics Forest management (fire suppression) Ocean fertilization
Major Contributors >0.2 PgC/y	 C sequestration in ag. soils Improved appliance efficiency Improved buildings Improved vehicle efficiency Non-CO₂ gas abatement from industry Non-CO₂ gas abatement from agriculture Reforestation Stratospheric sulfates 	 Biomass to hydrogen Biomass to fuel Cessation of deforestation Energy-efficient urban and transportation systems Fossil-fuel C separation with geologic or ocean storage High efficiency coal technology Large-scale solar Next generation nuclear fission Wind with H₂ storage Speculative technologies

Caldeira et al. 2004. A portfolio of carbon management options, p. 103-130, In C. B. Field and M. R. Raupach, eds. The Global Carbon Cycle. Island Press, Washington, DC.

Historic landcover 1840's

Current landcover 1990's

Reducing Loss – Reducing tillage

Global potential and rates of soil organic C sequestration

	Mean	SD	Activities	
	Global potential, Pg C yr ⁻¹			
IPCC (1996)	0.663	0.218	Ag. soils, set aside, wetland, degraded land	
Lal & Bruce (1999)	0.163	0.018	Bio offset, crop syst., CT, erosion, degraded land	
	Global historical rates, Mg C ha ⁻¹ yr ⁻¹			
West & Post (2002)	0.57	0.14	No till	

Grasslands

	Soil C	Soil N
	(Mg ha ⁻¹)	(Mg ha ⁻¹)
Control	36.0	3.3
N fertilized	40.7*	3.8*
Control	41.5*	3.7
Mowed	34.5	3.4
Burned	41.2*	3.2
Unburned	34.6	3.7*

Soil organic C after 2 and 12 y of CRP in Nebraska (Baer, Kitchen, Blair, and Rice) 0.8 MT/ha/y

Potential of U.S. Agriculture for Mitigation

Scenario	MMTC/yr		
C sequestration in cropland	132 (69-195)		
C sequestration in CRP	13		
C sequestration in rangelands	58 (30-110)		
Biofuel production (C offset)	~50		
Saving in fuel consumption	1-2		
Reduction of C emission from eroded sediments	~15		
Total	270		

US emissions: ~1800 MMTC/yr

Two Key Factors in Assessing the Terrestrial Carbon Sequestration Potential in the US:

BIOPHYSICAL HETEROGENEITY:

Carbon rates vary due to bio-physical conditions (soils, climate, etc)

ECONOMIC HETEROGENEITY:

Opportunity costs vary spatially due to factors affecting productivity and profitability

- production practices
- farm-specific management factors (experience, education, attitudes, etc.)
- prices (location)

Century 21.2 MMTC yr⁻¹ on 149 Mha cropland

INTEGRATED ECONOMIC AND BIOPHYSICAL MODEL: Century Model and Production Economic Model

Simulated Soil Carbon Sequestration from Fallow Reduction with a \$50 per metric ton Carbon Price

Simulated Soil Carbon Sequestration from Conservation Tillage with a \$50 per metric ton Carbon Price

Fallow and Conservation Tillage Contract Participation, Central U.S. Wheat

Measuring and monitoring soil C sequestration: a

challenge?

Long term experiments have been essential tools to understand the temporal dynamics of soil C

Soil survey maps can be used to estimate the spatial distribution of soil organic C stocks

The challenge consists in developing costeffective methods for detecting changes in soil organic C that occur in fields as a result of changes in management

Detecting and scaling changes in soil carbon

- Detecting soil C changes
 - Difficult on short time scales
 - Amount of change small compared to total C
- Methods for detecting and projecting soil C changes (Post et al. 2001)
 - Direct methods
 - Field and laboratory measurements
 - Eddy covariance
 - Indirect methods
 - Accounting
 - Stratified accounting
 - Remote sensing
 - Models

Post et al. (2001)

Sampling protocol used in the Prairie Soil Carbon Balance (PSCB) project

- Use "microsites" (4 x 7 m) to reduce spatial variability
- Three to six microsites per field
- Calculate SOC storage on an equivalent mass basis
- Analyze samples taken at different times together
- Soil C changes detected in 3 yr
 - 0.71 Mg C ha⁻¹ semiarid
 - 1.25 Mg C ha⁻¹ subhumid

- initial cores (yr 1997)
- initial cores (yr 1997) with buried marker (electromagnetic
- subsequent cores (yr 2002)

Ellert et al. (2001)

Emerging technologies for measuring soil C

- Laser Induced Breakdown Spectroscopy (LIBS)
- Neutron Inelastic Scattering (NIS)
- Infrared (NIR)
 - Minimal sampling volume
 - Analysis time < 1 min</p>
 - Daily throughput

Full Cost Accounting: GWP of Field Crop Activities

	Soil-C				_		Net
		g(CO_2 - ϵ	equiv /	m^2/y		
Annual Crops							
Conv. tillage	0	27	23	16	52	-4	114
No-till	-110	27	34	12	56	-5	14
Low Input	-40	9	19	20	60	-5	63
Organic	-29	0	0	19	56	-5	41
Perennial Crops							
Alfalfa	-161	0	80	8	59	-6	-20

N management to reduce N₂O

(reduce N availability when N₂O production potential is greatest and plant needs are low)

- Timing
 - Split applications
 - Delayed applications
 - Use nitrification inhibitors
- Placement
 - Banded
 - Injected
- Rate
 - Utilized N from organic matter efficiently
 - Soil, crop residue, cover crops

Methane

Mitigation of CH₄!!

United States Efforts in Agriculture

- USDA is utilizing conservation programs to encourage carbon sequestration and GHG reductions
 - GHG offsets are factors in setting priorities under:
 - The Environmental Quality Incentives Program
 - The Conservation Reserve Program
 - Methane to Markets
 - Conservation Innovation Grants
- Federal government challenged the private sector to take action
 - USDA is working with the Department of Energy to improve the voluntary GHG reduction registry
 - USDA is negotiating voluntary agreements with businesses and sectors
 - Several corporations are undertaking projects in partnership with farmers and land owners

Examples of feasibility and pilot projects on soil carbon sequestration

Region	Land Use	Land management change
Saskatchewan, Canada	Cropland	Direct seeding / cropping intensification
Pacific Northwest, USA	Cropland	Direct seeding / cropping intensification
Midwest	Cropland	No-till
Iowa, Kansas, Nebraska	Grass planting	New grass plantings
Oaxaca, Mexico	Crop / natural fallow secondary forest	Fruit tree intercrops with annual crops / Conservation tillage
Pampas, Argentina	Cropland	Direct seeding
Kazakhstan	Cropland	Agriculture to grassland

Carbon Accounting System

- Verifiable and transparent for reporting changes in soil carbon stocks
 - (i.e., withstand reasonable scrutiny by an independent third party as to completeness, consistency, and correctness)
- Cost efficient if soil C will be competitive with other C offsets
- -Based on best science possible
- Provide accounts and associated uncertainties for soil C measurements

Research and Education Needs

- Continued validation of models
- Full cost accounting
- Synthesis of USDA and LG universities information
 - Maintain long-term sites
- N₂O and N management
- CH₄
- Measurement and monitoring at multiple scales
- Standards/guidelines for measurement and accounting

Research and Education Needs

- Demonstration projects
- New technologies
 - May increase soil C
 - Measurements

- Multiple agencies and programs
 - Better coordination
 - Make use of university partners
 - Multi-institutional and multi-disciplinary

M. Sarrantonio (1994)