Johnson, Jon D. (Washington State University - Puyallup Research & Extension Center, 7612 Pioneer Way E., Puyallup, WA, 98371; Phone: 253-445-4522; Fax: 253-445-4569; Email: poplar@wsu.edu)
Jon D. Johnson *
The burning of fossil fuels for energy generation has resulted in the steady increase in atmospheric carbon dioxide concentration over the last century and may have profound effects on the global environment and economy, resulting from the global warming brought on by the greenhouse effect. Above- and below-ground carbon sequestration rates were determined from destructive harvests of poplar stands ranging from 2 to 8 years old representing four commercial varieties of hybrid poplar growing on the west and east side of the Cascade Mountain range. Prior to sampling, each tree was characterized by above ground tree dimensions (height and diameter) that were then used to develop algorithms to predict standing carbon. In addition, soil carbon sequestration was determined from soil cores collected to a depth of 1m from around each harvest tree and compared to cores collected from adjacent agricultural fields. An estimate of both labile and non-labile soil carbon was determined using a boiling water extract.