

Introduction
 Nitrous oxide and global warming
 Nitrous oxide and agriculture
How do soils generate N ₂ O?
What factors affect N ₂ O production in soils?
How can we monitor N ₂ O fluxes?
Direct methods
 Chambers (manual, automatic)
 Tunable diode laser absorption spectroscopy
 Isotopic (¹⁵N)
Indirect methods
 Accounting (e.g., IPCC)
Models (e.g., DNDC, DayCent, EPIC)

First, a reality check from the facts synthesized in the 4th Assessment Report of IPCC, WG I, Ch. 2

- Human activities result in emissions of four principal greenhouse gases: CO₂, CH₄, N₂O and the halocarbons (a group of gases FI, CI and Br)
- Atmospheric concentrations of long-lived greenhouse gases have been increasing over the last 2,000 years, especially since 1750 –the beginning of the industrial era
- Nitrous oxide is also emitted by human activities such as fertilizer use and fossil fuel burning. Natural processes in soils and the oceans also release N₂O

	Concentrations and ∆s (ppm)		Radiative Forcing	
	2005	∆ since 1998	2005 W m ⁻²	∆ since 1998 (%)
CO ₂	379	13	1.66	13
CH₄	1.774	0.011	0.48	-
N ₂ O	0.319	0.005	0.16	11

Nitrous oxide and agriculture... Further synthesis from IPCC, WG III, Ch. 8

- Agricultural lands (cropland, grasslands and permanent crops) occupy about 40-50% of the Earth's land surface (13.4 Bha)
- Agricultural activities resulted in emissions of 5.1-6.1 GtCO₂-eq yr⁻¹ in 2005 (10-12 % of total global anthropogenic emissions of greenhouse gases)
 - CH₄ contributes 3.3 GtCO₂-eq yr⁻¹ (50% of total)
 - N₂O contributes 2.8 GtCO₂-eq yr⁻¹ (60% of total)
 - CO₂ contributes 0.04 GtCO₂-eq yr⁻¹ (~0% of total)

KBS Long-Term Ecological Research (LTER) Site Robertson et al. Science 289:1922-1925 (2000)								
	Ecosystem Type	Management Intensity						
	Annual Crops (Corn - Soybear Conventional tillage No-till Low-input with legume cover Organic with legume cover	n - Wheat) High						
	Perennial Crops Alfalfa Poplar trees Successional Communities Early successional old field Mid successional old field Late successional forest	Low						

Measuring and modeling N₂O fluxes at the field scale

Grant and Pattey. (2003) Soil Biol. Biochem. 35:225-243

- The model ecosys was run in 3D mode to simulate N₂O fluxes from a fertilized field with topographic variations
- Modeled data were compared with field scale measurements made using eddy covariance towers and a tunable diode laser trace gas analyzer
- Large spatial and temporal variability of N₂O emissions were modeled and measured
- Spatial and temporal aggregation of emissions to regional scales should not be based upon modeled or measured values of individual sites at time steps of a day or more
- Aggregation should rather be based upon diurnal values from typical landscapes within a region in which variation of surface topography and soil type is accurately represented

