Soil Carbon Pools under Different Management Practices in Kansas
Karina P. Fabrizzi, Charles W. Rice, Alan Schlegel, Dallas Peterson, and Carlyle Thompson, Kansas State University

Materials and Methods

Management practices such as crop rotation, tillage, and fertilization can influence soil biological activities through their effects on the quantity, structure, and distribution of soil organic carbon (SOC).

The objective of this study was to evaluate the effects of different management practices on soil C fractions.

Soil samples were taken in 2003-2004 at three locations: Ashland Bottoms, Hays, and Tribune at 0-5 and 5-15 cm.

Treatments

- Tillage systems: Conventional tillage (CT), reduced tillage (RT), no-tillage (NT). Native prairie sod (SOD) was included in Tribune site.
- N rates: 0 (0-N), 22 (22-N), 45 (45-N), 67 (67-N) kg N ha\(^{-1}\) for Hays.
- Crop rotation: wheat-soybean (W/S) and wheat-wheat (W/W).

Measurements

- Soil organic carbon (SOC) (g C kg\(^{-1}\))
- Soil microbial biomass carbon (SMB-C) (%)
- Potentially mineralizable C (PMC) (%)
- Recalcitrant C (%): SOC -(SMB-C + PMC)

In Hays, SMB-C was higher at 0-N rate than at 67-N at 0-15 cm (P<0.05), but we did not observe a significant tillage effect. Potentially mineralizable C was similar between tillage at 0-N, but it was significantly greater under NT than CT and RT at 67-N treatments (P<0.05). Recalcitrant C was significant lower under NT at 67-N treatments (P<0.05).

In Tribune, SMB-C in CT and SOD was similar and significantly greater than NT and RT systems (P<0.05). CT had a significantly lower PMC and greater recalcitrant C (P<0.05) compared with the other tillage systems and native prairie sod.

In Ashland, SMB-C was higher in wheat-soybean rotation than wheat-wheat rotation, but there was no difference by tillage systems (P<0.05). Potentially mineralizable C was significant greater under CT and RT compared with NT, but recalcitrant C was lower under CT (P<0.05).

Summary

- In general, NT increased soil organic C.
- Soil microbial biomass was a small fraction of the total C pool and was more variable in response to treatments.
- Potentially mineralizable C and the recalcitrant C appears to be the fractions most affected by tillage treatments. In general, NT increased PMC.
- The recalcitrant C fraction tend to be lower with NT.

Acknowledgments

This material is based upon work supported by the Cooperative State Research, Education, and Extension Service, U.S. Department of Agriculture, Under Agreement No. 2001-38700-11092.