

Soil Management Protocols for for Greenhouse Gas Offset Projects

Presented by Dennis Haak haakd@agr.gc.ca 4th USDA GHG Conference February 6 - 8, 2007 Baltimore, MD

Create opportunities for farmers to generate carbon credits

Economic feasibility versus environmental integrity

- 1. PERRL Initiative
- 2. Canada's GHG Offset System Development

-Soil Management Protocols

3. Industry Initiatives

Pilot Emission, Reductions, Removals and Learnings Initiative (PERRL)

- 1. Program Lead: Environment Canada, other fed depts.
- 2. Funding: \$15 million, Action Plan 2000, 2003-2007, emission credits purchased by program
- 3. Two agricultural projects
 - -no till and conversion of annual cropland to perennial forage
 - -\$1.1 million, 250 producers, 2500 ha

Skeleton protocol, ongoing collaboration between program authority and project proponent to improve quantification, monitoring, and verification.

Canada's GHG Offset System Development 2003 - 2006

- 1. Led by Environment Canada in consultation with provinces, industry, NGO's, & other fed depts.
- 2. Domestic market, plus purchases from federal Climate Fund.
- 3. Offsets recognized as Kyoto reductions
- 4. Guidance builds upon ISO 14064 part 2
- 5. Desire to develop standardized protocols to improve efficiency
- 6. Put on hold or cancelled in 2006

ISO 14064 – Part 2

- 1. Principles: relevance, completeness, consistency, accuracy, transparency, conservativeness
- 2. Elements: quantification, monitoring, verification
- Sub elements: baseline scenarios; sources, sinks, and removals (SSR's); data management
- 4. Other guidance: good practice guidance (eg. IPCC)
 - regional or local peer reviewed science
 - characteristics of program, market, legislation
 - stakeholder consultation

Bottom Line: high degree of rigor and detail

specific soil protocols - 70+ pages each

Agricultural Protocols led by Technical Working Groups

- 1. Pork
 - -feeding strategies, manure storage & land application
- 2. Beef feeding strategies
- 3. Manure Treatment anaerobic digestion
- 4. Agroforestry
- 5. Soil Management
 - -no till default
 - -other soil carbon approaches
 - -nutrient management: N reduction in corn

No Till Default Protocol - Quantification

- 1. Used NCGAVS regional coefficients based on Century
- 2. Regional baseline deduction based on no till and reduced till adoption in baseline year (Census data)
- 3. Activity Definition Criteria
 - consistent with definitions used to generate coefficients & baseline adoption rates, for each region
 - provide sufficient guidance for farmers
 - enable efficient monitoring and verification

Agricultural Regions for No Till

Prairie Regions Tillage DefinitionsNo TillReduced Till

Activity Definition Issues

- 1. Crop Types (rotations, fall seeded crops, perennial forages)
- 2. Nutrient Management (fertilizer and manure application)
- 3. Irrigation
- 4. Crop Utilization (grain, hay, silage)
- 5. Crop Residue Management (spreading, harvesting, grazing, burning)
- 6. Crop Failures, Unseeded Land, Cover Crops

Goal: maintain accuracy, yet provide flexibility

Monitoring & Verification Issues

Critical Data: project size, location, adherence to activities

- 1. Farmer contract, sworn affidavit
- 2. Farmer generated field records, GPS
- 3. Proponent Monitoring
 - a) Remote Sensing ?
 - b) Site Inspection
 - equipment (seeding, tillage, nutrient applicator)
 - field assessment (standing stubble, residue, row spacing, seed spread, packing system)
 - 4. Third Party Verification

Other Challenges

- 1. Long Term Soil Carbon Maintenance
 - Reversal coefficients
 - Liability period extends beyond crediting period
 - Permanent versus temporary credits

- 2. Baseline Reassessment
 - Crediting period and project feasibility
 - Coefficients adjusted for crediting period

No Till Protocol - Coefficients

	No Till Coefficients					Full Till Coefficients	
	SOC 10 yr	N ₂ O	Energy	Total	Net	Net	Stored SOC Reversal
Region	tonnes CO _{2 equiv} / ha / year						
East	0.25		0.16	0.42	0.34	-0.08	-0.21
East/Central	0.41		0.16	0.58	0.41	-0.16	-0.30
Parkland	0.59	0.05	0.11	0.74	0.49	-0.24	-0.39
Dry Prairie	0.41	0.01	0.06	0.48	0.26	-0.20	-0.22
West	0.20		0.11	0.31	0.26	-0.05	-0.17

Other Soil Carbon Approaches

- 1. Motivation: reward individual producer performance
- 2. On Farm Methods

-measurement: high variability & small SOC lead to high cost -modelling: uncertainty of starting SOC for various C pools

3. Recommendations

- use measurement to develop custom coefficients for pools of producers with similar soil/landscapes and management.

- use a regional baseline coefficient deduction similar to default

- need to include other SOC practices such as reduced fallow and perennial forages in baseline.

Industry Led Initiatives

- 1. Large Final Emitters interested in purchasing offset credits from agricultural producers
- 2. Agriculturally based aggregators eager to represent farmers in pooled projects (contract signups)
- 3. Some project methodology development and pilot studies, but difficult in policy vacuum.
- 4. Only one agricultural project actively generating and trading carbon credits.

Lessons Learned

- 1. Currently activity / coefficient based approach more workable than soil carbon measurement
- 2. Low value: @\$4/tonne, No Till earns \$1-2 / ha / yr for 5-10 yrs
- 3. Options to Increase Value
 - -higher price for Kyoto recognized offsets
 - -bundle additional practices (reduced fallow, perennial forages, improved nutrient management)
 - -pool producers with similar practices and soil / landscapes
 - -add other EG&S (water quality, biodiversity)
- 4. Clearer Policy and Consistent Interpretation
 -will ISO 14064 or similar guidance be accepted internationally
 -baseline deductions and soil carbon maintenance / liability

Thank you