Competitiveness of Terrestrial Greenhouse Gas Offsets: Are They a Bridge to the Future?

Ron Sands Joint Global Change Research Institute Battelle – PNNL – University of Maryland

> Bruce McCarl Texas A&M University

USDA Greenhouse Gas Symposium Baltimore, Maryland 22-24 March 2005

Battelle

Pacific Northwest National Laboratory Operated by Batalle for the U.S. Department of Bragy

Acknowledgements

Research supported by

- U.S. Department of Energy program to enhance Carbon Sequestration in Terrestrial Ecosystems (CSiTE)
- USDA Consortium for Agricultural Soils Mitigation of Greenhouse Gases (CASMGS)
- U.S. Environmental Protection Agency

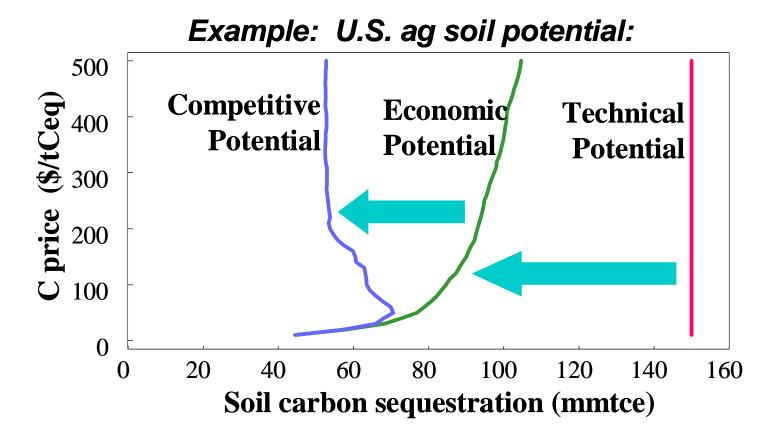
Introduction

- Can agriculture and forestry provide a short term bridge to a longer term reduced-emissions future?
- How significant a contribution could agriculture and forestry make relative to non-agricultural (e.g., energy and industrial) mitigation possibilities?

Methodology for Assessment

➢ Models

- FASOMGHG
- Second Generation Model
- FASOMGHG coverage
 - FASOMGHG simulates production of 22 traditional crops, 3 biofuel crops, and 29 animal products in 63 U.S. regions, plus 8 forest commodities in a 100 year simulation
- Prospects for global analysis
 - Capabilities of FASOMGHG are not yet available for the globe
 - Modeling activities in Europe and Asia


FASOMGHG Overview

- Intertemporal, mathematical programming model depicting land transfers and other resource allocations among agricultural and forestry sectors in the U.S.
- 10-year time steps through 2100
- Endogenous variables
 - Commodity and factor prices
 - Production, consumption, export, and import quantities
 - Management strategy
 - Resource use
 - Economic welfare
- Greenhouse gas accounting
 - Carbon dioxide emissions and absorption
 - Methane emissions
 - Nitrous oxide emissions

FASOMGHG Activities

		GHG affected		
Mitigation strategy	Strategy Nature	CO ₂	CH ₄	N_2O
Biofuel production	Offset	Х	Х	Х
Crop mix alteration	Emission, Sequestration	Х		Х
Rice acreage reduction	Emission		Х	
Crop fertilizer rate reduction	Emission	Х		Х
Other crop input alteration	Emission	Х		
Crop tillage alteration	Sequestration	Х		
Grassland conversion	Sequestration	Х		
Irrigated /dry land conversion	Emission	Х		Х
Livestock management	Emission		Х	
Livestock herd size alteration	Emission		Х	Х
Livestock system change	Emission		Х	Х
Liquid manure management	Emission		Х	Х

Concepts for Assessing Mitigation Potential

Greenhouse Gas Mitigation Options (SGM with FASOMGHG)

Terrestrial

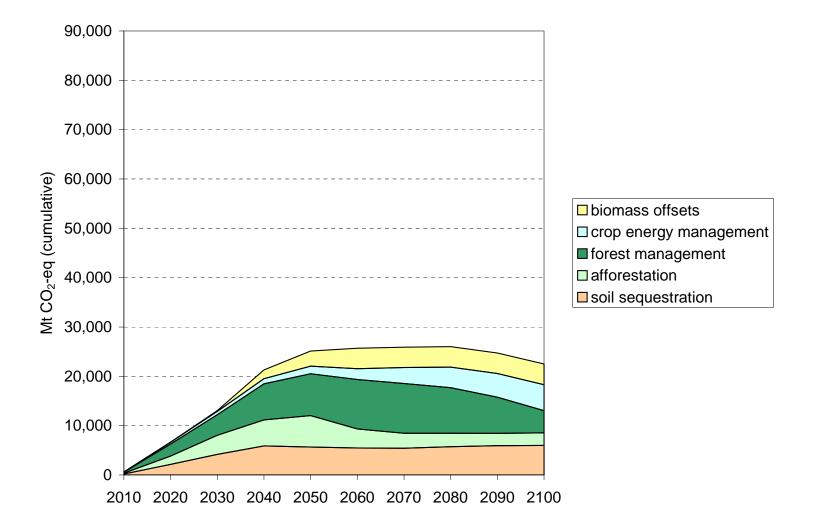
- Soil sequestration
- Forest management
- Afforestation
- Biofuel offsets
- Crop energy management
- ➢ Non-CO₂ greenhouse gases
 - Exogenous marginal abatement cost curves
 - Developed by U.S. EPA for Energy Modeling Forum
 - Covers agriculture and industry
- Energy efficiency and fuel switching
- ➢ CO₂ capture and storage (CCS)

Second Generation Model

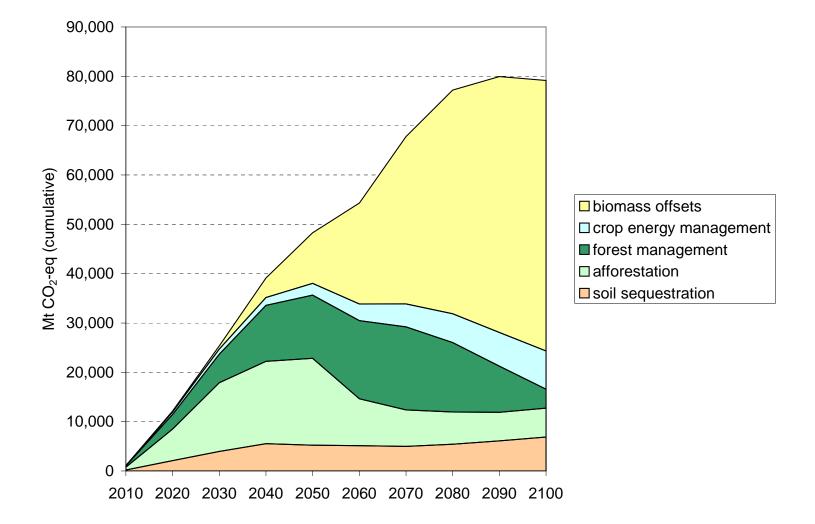
SGM characteristics

- Computable general equilibrium model of United States and other world regions
- Five-year time steps from 1990 through 2050
- Capital stocks are industry specific with a new vintage for each model time step
- \succ CO₂ capture and storage with electric power
 - Engineering cost model for capture process from David and Herzog, 2000, "The Cost of Carbon Capture," Proceedings of the Fifth International Conference on Greenhouse Gas Control Technologies
 - Constant cost of carbon disposal (\$40 per tC)

Synchronizing the Models

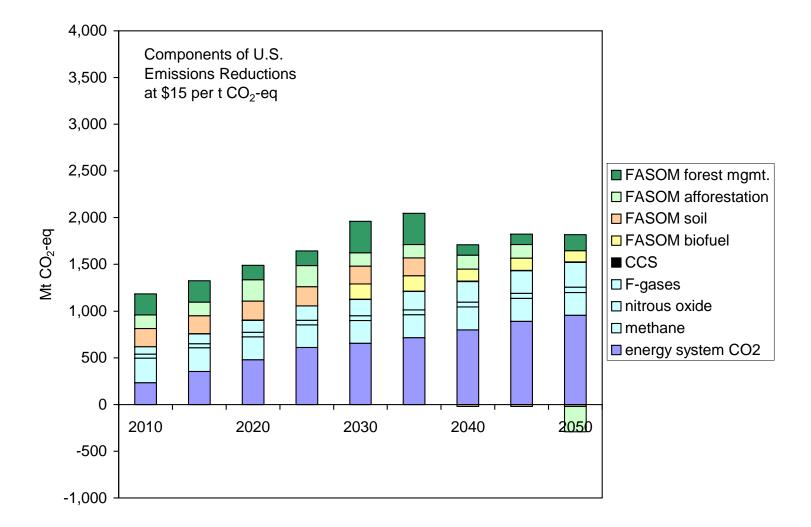

Results from both FASOMGHG and SGM are path dependent

- Level of greenhouse gas mitigation depends on current carbon price and time path of previous carbon prices (FASOMGHG also depends on future prices)
- Consequence of dynamic structures in FASOMGHG and SGM
- Same time path of carbon prices is applied to FASOMGHG and SGM for consistency
- Options for carbon price paths
 - Hotelling
 - Constant carbon (dioxide) prices
- > Following results at \$5, \$15, \$30, \$50 per t of CO_2 -eq
 - Corresponds to prices of \$18.33, \$55.00, \$110.00, \$183.33 per t of carbon equivalent
 - Carbon dioxide prices start in 2010 and held constant thereafter

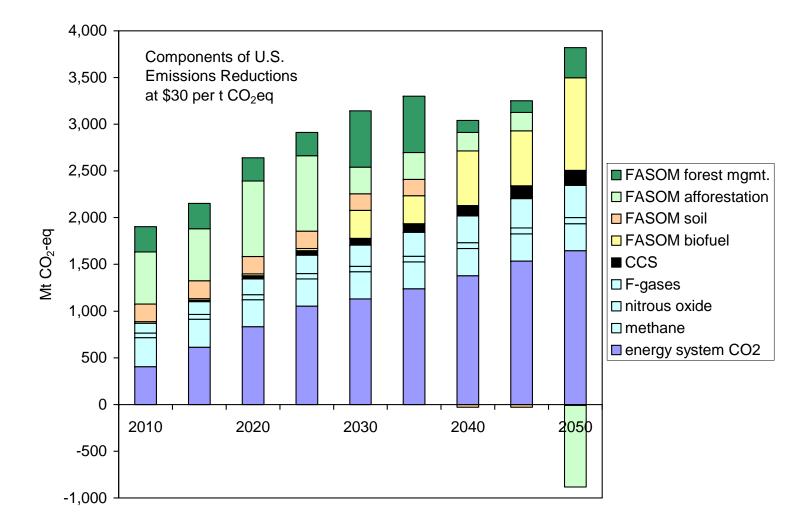

FASOMGHG Results

- Results reported as cumulative amount of CO₂-eq sequestered or emissions avoided over time
 - More accurate picture of dynamics
 - Soil sequestration saturates after three decades
 - Quantity of sequestered carbon may decline in later decades, especially when trees are harvested
- Charts shown for \$15 and \$30 per t CO₂-eq for 2010 through 2100

FASOMGHG Results (\$15 per t CO₂-eq)

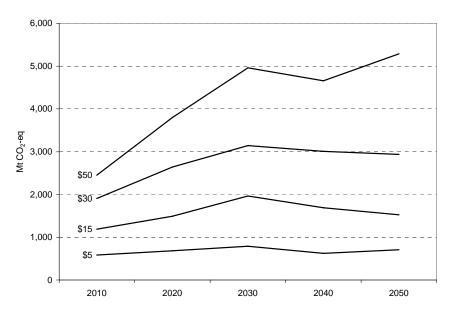

FASOMGHG Results (\$30 per t CO₂-eq)

Combined Results


- FASOMGHG output converted from cumulative quantities to annual increments
- Mitigation potential is summed every five years across FASOMGHG and SGM
- Charts shown for \$15 and \$30 per t CO₂-eq for 2010 through 2050
- Annual increments for soil sequestration and afforestation can be negative in later decades

Combined Results (\$15 per t CO₂-eq)

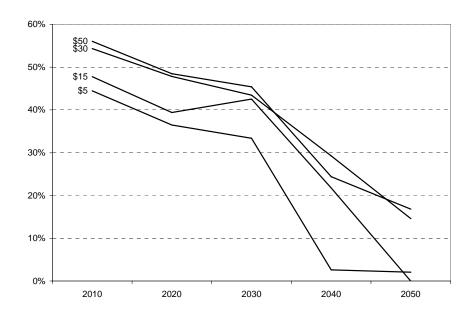
Battelle


Combined Results (\$30 per t CO₂-eq)

Battelle

Strategic Comparison (1)

- Total mitigation potential across time and carbon prices
- Mitigation potential increases with CO₂ price, as expected
- Mitigation potential grows slowly over time at low CO₂ prices
 - Masks underlying trends in individual options
 - Terrestrial sequestration contribution decreases rapidly after initial decades



Total Mitigation Potential

Strategic Comparison (2)

- Contribution of terrestrial options
 - Large percentage of total in first three decades, even at high carbon prices
 - Biofuel offsets provide most of terrestrial contribution in later decades, but only at higher carbon prices

Terrestrial Fraction of Mitigation

Conclusions

- Terrestrial sequestration options are available in the early years of a carbon policy
 - Buy time to develop energy system alternatives that are capital intensive
 - However, terrestrial sequestration eventually saturates
 - Biofuels play an increasing role over time and at higher carbon prices
- Non-CO₂ greenhouse gas mitigation options are also available early relative to options in the energy system
- What is needed for global analysis?
 - Development of FASOMGHG for regions other that U.S.
 - Assessment of CO₂ capture and storage capabilities globally
 - Revisit non-CO₂ marginal abatement costs curves, especially in developing countries