## Moisture Controls on Trace Gas Fluxes From Semiarid Soils

### Dean A. Martens and Jean E. T. McLain

SWRC – Tucson and Water Conservation Laboratory – Phoenix



### **Semiarid Concepts**

- Due to limited rain and high seasonal temperatures that limit plant productivity, semiarid systems are not important in global C dynamics?
- Semiarid ecosystems do not contribute to or mitigate atmospheric C concentrations involved in potential climate disruptions



Study site was the San Pedro Riparian zone near Tombstone AZ.

The San Pedro is the last nearly perennial, non dammed semiarid stream in the southwest.

It occupies an important avian – North – South flyway between the Rio Grande and the Colorado Rivers

### Vegetation Response to Seasonal Moisture

**July 2002** 

August 2002





#### 15 mm rain in 7 months

#### 200 mm rain in 1 month

### **Three Vegetation Sites**

#### **Mesquite Community**





Annual grasses and forbes

#### Sacaton site





#### Ambient CO<sub>2</sub> and soil factors

CO<sub>2</sub> flux and isotope collection

# Instrumentation and Methods

Trace gas sampling



| Soil Properties |          |        |                       |                    |                            |      |
|-----------------|----------|--------|-----------------------|--------------------|----------------------------|------|
| S               | oil      | Depth  | (g kg <sup>-1</sup> ) | <b>δ13C</b><br>(‰) | N<br>(g kg <sup>-1</sup> ) | C/N  |
| N               | lesquite | Plant  |                       | -27.1              |                            |      |
|                 |          | O-H    |                       | -22.7              |                            |      |
|                 |          | 0-5 cm | 29.9                  | -20.2              | 3.08                       | 9.7  |
|                 |          | 5-10   | 12.7                  | -18.9              | 1.36                       | 9.4  |
|                 |          | 10-20  | 10.5                  | -18.7              | 1.01                       | 9.8  |
| C               | pen      | Plant  |                       | -19.9              |                            |      |
|                 |          |        |                       | -18.4              |                            |      |
|                 |          | 0-5 cm | 5.83                  | -18.3              | 0.63                       | 9.2  |
|                 |          | 5-10   | 6.04                  | -18.8              | 0.58                       | 10.3 |
|                 |          | 10-20  | 3.76                  | -17.1              | 0.37                       | 10.3 |
| S               | acaton   | Plant  |                       | -13.5              |                            |      |
|                 |          |        |                       | -13.4              |                            |      |
|                 |          | 0-5 cm | 17.6                  | -16.0              | 1.81                       | 9.7  |
|                 |          | 5-10   | 11.6                  | -15.3              | 1.21                       | 9.6  |
|                 |          | 10-20  | 10.9                  | -14.5              | 1.23                       | 11.0 |
|                 |          |        |                       |                    |                            |      |

#### Ambient CO<sub>2</sub> Response to Rainfall





#### Open annual grass site – 697 ppm average

Mesquite site – 448 ppm average

Jan 1 – July 2002 = 15 mm; 2002 monsoon = 238 mm; Total for 2002 = 238 mm Jan 1 – July 2003 = 40 mm; 2003 monsoon = 95 mm ; Total for 2003 = 232 mm

#### Carbon Dioxide Flux 2002 – 2003



**Figure 3.** Carbon dioxide efflux from three SPRNCA vegetation sites on measurement dates during 15-month monitoring period (July 2002 through September 2003). Symbols are averaged values from 2 or 3 flux collars installed at each site.

2002 Monsoon = 123 - 126 mg m<sup>-2</sup> Winter = 80 - 109**mg** m<sup>-2</sup> 2003 Monsoon = 72 – 105 mg m<sup>-2</sup> 2002 vs. 2003 40% reduction, yet during the 2002 season the **5X difference in** soil C did not impact fluxes

### Isotopic Composition of CO<sub>2</sub> Flux



Mesquite site = 63 to 98%C<sub>3</sub>-C

Open and Sacaton site = 50 to 65% C<sub>4</sub>-C

**Figure 4.** Isotopic composition of carbon dioxide respired from soil surface in three SPRNCA vegetation sites on measurement dates during monsoon and post-monsoon (July through December) 2002. Symbols are averaged values of two carbon dioxide collections per site on each sampling date, plus or minus standard deviation.

#### Methane Oxidation Rates 2002 – 2003



2002 Monsoon = 29 - 61 mg m<sup>-2</sup>

Winter = 118 – 160 mg m<sup>-2</sup>

2003 Monsoon = 62 - 70 mg m<sup>-2</sup>

**Figure 6.** Methane consumption in three SPRNCA vegetation sites on measurement dates during 15-month monitoring period (July 2002 through September 2003). Symbols are averaged values from 2 or 3 flux collars installed at each site.

#### Methane Oxidation with Soil Depth



**Cool season** may limit surface oxidation, but warmer temps in the subsoil continue to promote oxidation also when surface is dry, subsoil active

#### Impacts of Grazing on CH<sub>4</sub> Oxidation

#### 100 yr exclosure "Moderate" grazing for 50 yr Open Open Depth Depth Julian Day Julian Day

#### Nitrous Oxide Fluxes 2002 – 2003



**Figure 5.** Nitrous oxide efflux from three SPRNCA vegetation sites on measurement dates during 15-month monitoring period (July 2002 through September 2003). Symbols are averaged values from 2 or 3 flux collars installed at each site.

2002 Monsoon = 4 to 38 mg m<sup>-2</sup>

Winter = 17 to 54 mg m<sup>-2</sup>

2003 Monsoon = 8 to 20 mg m<sup>-2</sup>

2002 vs. 2003 30% reduction

#### δ<sup>15</sup>N<sub>2</sub>O Flux From Mesquite



Isotope values with dry surface soils suggests subsoil activity and during monsoon represents surface activity

#### **Greenhouse Gas Production**

- 2002 monsoon season averaged 303 mg CO<sub>2</sub> equivalents m<sup>-2</sup> (57 d)
- Cool season averaged 390 mg CO<sub>2</sub> equivalents m<sup>-2</sup> (307 d)
- 2003 monsoon season averaged 185 mg CO<sub>2</sub> equivalents m<sup>-2</sup> (57 d)
- 60% reduction of warm season rain reduced CO<sub>2</sub> equivalents by 39%

### Implications

- Recent work has emphasized the increased contribution of terrestrial C sources to atmospheric C pools if temperatures increase – positive feedback to climate change
- For the SW region, climate change models differ on whether future climate scenarios will be wetter or drier and possible shifts from summer to winter rains

### **These Results Suggest**

- If rainfall shifts to greater winter events, overall reductions in surface dominated CO<sub>2</sub> and N<sub>2</sub>O fluxes and prolonged spring CH<sub>4</sub> subsurface oxidation
- Higher warm season precipitation will increase CO<sub>2</sub> and N<sub>2</sub>O fluxes due to rapid oxidation of labile C pools that would not be off set by higher CH<sub>4</sub> oxidation rates