Growing Energy

How Biofuels Can Help End America’s Oil Dependence

Jeff Fiedler
Natural Resources Defense Council
March 22, 2005
Background

• Funded by National Commission on Energy Policy and Energy Foundation
 – Nathanael Greene, NRDC

• Coordinated with DOE-funded research by:
 – Bruce Dale & Fuat Celik, Michigan State
 – Eric Larson, Princeton University
 – Mark Laser & Lee Lynd, Dartmouth College
 – Jason Mark, Union of Concerned Scientists
 – Samuel McLaughlin, Oak Ridge National Laboratory
 – John Sheehan, National Renewable Energy Laboratory
 – Michael Wang, Argonne National Laboratory
Cellulosic Has A Realistic Future

• Land is not a constraint
• Economics are promising
• Environmental benefits
 – Caveat: Air quality concerns with low ethanol blends
• Energy/oil security benefits
• Major new crop for farmers
• Policies are needed to achieve potential:
 – R&D funding
 – Pre-commercial deployment subsidies
 – Production incentives
Land Is Not A Constraint

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Status Quo 2050</td>
<td>289</td>
<td>5</td>
<td>33</td>
<td>1753</td>
</tr>
<tr>
<td>Production and Efficiency Gains</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smart Growth/Efficiency</td>
<td>108</td>
<td>5</td>
<td>33</td>
<td>657</td>
</tr>
<tr>
<td>Conversion Efficiency</td>
<td>108</td>
<td>5</td>
<td>69</td>
<td>313</td>
</tr>
<tr>
<td>Biofuels Coproduction</td>
<td>108</td>
<td>5</td>
<td>77</td>
<td>282</td>
</tr>
<tr>
<td>Switchgrass Yield</td>
<td>108</td>
<td>12.4</td>
<td>77</td>
<td>114</td>
</tr>
</tbody>
</table>

Alternative Sources of Land and Biomass

- **Protein Recovery**: Replace 50-100% of 73 million acres of soybean
 - 41 - 77
- **Corn Stover**: Collect 75% of 323 million tons of corn stover
 - 21 - 58
- **CRP Land**: Convert 33-50% of CRP acreage into switchgrass
 - 6 - 48
Economics Are Promising

The graph shows the economic feasibility of ethanol production as a function of plant scale (dry ton/day). The blue line represents Ethanol/GTCC, while the yellow line represents Ethanol/Protein/Rankine. The graph indicates that as plant scale increases, the wholesale price of ethanol decreases, suggesting promising economics.

Key points:
- Gasoline: 2002-2004
- Decatur, IL ADM Plant

The graph is labeled with the ERDC logo at the top right.
What It Means For Farmers

• Biomass can be a major, valuable crop:
 – 107 M acres in switchgrass by 2050
 – $200-500/acre: 4-10 times CRP contract payment
 – Regionally diverse sources

• Proactive response to emerging policy drivers:
 – Energy security: diversified, domestic sources
 – Mandatory climate policies
 – WTO pressure on support for traditional crops

• Managing the transition:
 – Equipment, knowledge, markets…?
 – Protect investments in corn ethanol
You **CAN** Get There From Here

- **Where’s “There”?**
 - Cellulosic ethanol cost competitive with gasoline
 - 1 Billion Gallons of production capacity by 2015
 - R&D: $1.1B
 - Biomass conversion; co-products; feedstock production
 - Pre-commercial deployment: $900 M
 - Maintain private sector due diligence, financing
 - Phase out over time, leaving self-sufficient industry
Commercial Production Incentives

- Provide **consistent** driver for biofuels:
 - RFS that includes cellulosic biofuels
 - Recognize that all biofuels are not created equal
 - Oil savings/energy security
 - Vehicle efficiency and smart growth are key
 - Climate policies. GHG limits:
 - Internalize GHG incentive in fuels market
 - Other Ag options also rewarded: C sequestration, on-farm wind, methane capture, reduced nitrogen runoff
Parting Thoughts

• This isn’t about corn vs. cellulosic ethanol
 – Corn (starch) ethanol is the present technology
 – Cellulosic has big long-term potential
 • Energy and environmental goals
 • New, major, regionally diverse agricultural market
 – Opportunities for achieving joint objectives

• Inevitability of oil dependence, climate policies
 – Miss the boat without 10 year R&D, deployment
More Parting Thoughts

• Ag – Enviro Cooperation Possible

• Managing the transition is key for all sides
 – Environmental performance
 • Air quality backsliding
 • Level playing field for cellulosic
 – Integration with corn/corn ethanol production

• Cooperation Takes Work