Estimating the Levelized Cost to Sequester Carbon ($/ton CO$_2$e) in Four Different Types of Forest Carbon Sequestration Projects

Adam Diamant
Electric Power Research Institute (EPRI)
Manager, Economic Analysis
Global Climate Change Program

Presented at:
3rd USDA Symposium on Greenhouse Gases & Carbon Sequestration in Agriculture & Forestry
Baltimore, MD
March 22, 2005
Topics

• The Analytic Challenge
• EPRI Model Overview
• Forest Carbon Accounting
• Quantitative Results & Summary
The Analytic Challenge

• How can electric companies decide on the best approach to use to invest in forest carbon sequestration projects?

• How can they calculate the cost-effectiveness of different ways to implement forest carbon sequestration projects so they can be compared?

• EPRI recently developed a computer simulation model to estimate the cost-effectiveness forest carbon sequestration projects.
Forest Carbon Management Options

- **No Harvest**
 - Buy land & plant trees
 - Retain ownership for 100 years
 - No timber harvest allowed

- **Donate**
 - Buy land & plant trees
 - Donate land in year 5 to land management agency or non-profit
 - Company retains carbon rights over 100 years

- **Thin**
 - Buy land & plant trees
 - Retain ownership for 100 years
 - Thin forest in year 50, 60, and 70

- **Harvest**
 - Same as “Thin”
 - “Optimal” final timber harvest between years 71-100.
GHG-CAM v1.0 Overview

- Greenhouse Gas Cost Analysis Model (GHG-CAM v1.0)
 - Excel®-based spreadsheet model
 - Incorporates “Real Options Calculator” (ROC¹) add-in
 - Developed by EPRI in conjunction with Cinergy Corp. in 2004

- Version 1.0 includes three analysis “modules”
 - Biomass Cofiring
 - Heat Rate Improvement
 - Forest Carbon Sequestration

- Version 1.1 now in development includes:
 - New Wind Generation
 - New Solar Generation

¹The “ROC” is available from Onward, Inc. at www.onwardinc.com.
GHG-CAM Purpose

- Analyzes and compares on a financial basis different GHG emissions reduction actions.
 - Calculates the present value after-tax net income of the proposed project, including the expected future value of carbon “credits” and any required carbon “buyback” for thinning and harvest.
 - Calculates the GHG emissions reductions for each GHG abatement action over a defined project time horizon.
 - Calculates the cost-effectiveness of each abatement action on the basis of the levelized cost of emissions reductions ($/ton CO$_2$e).

- Analysis Methods
 - Based on modern finance & statistical methods
 - Uses advanced discounted cash flow (DCF) approach
 - Monte-Carlo simulation is used to reflect uncertainty in the “real” values of key variables (e.g., carbon prices, electricity prices, …)
 - Calculates real option values, and derives optimal exercise strategy
GHG-CAM Analysis “Perspectives”

• Deterministic
 – Uses “best guess” estimates for key uncertain variables
 – Results are shown as a single number (e.g., $10/ton CO\textsubscript{2}e$)
 – Includes 0 and $+$ expected future carbon prices

• Stochastic
 – Describes key uncertain variables probabilistically
 – Monte-Carlo simulation is used to generate uncertain input values
 – Outputs include: expected value, range, frequency, and value at risk
 – Includes 0 and $+$ expected future carbon prices

• Real Options
 – Same features as stochastic analysis perspective
 – Project value also includes real option value and key price uncertainties
 – Determines optimal option “exercise” strategy to implement project
 – Expected future carbon prices is the “monitored” forecast
Forward Prices (1 of 2)

• GHG-CAM incorporates user-defined forward prices for fuels, commodities and emissions allowances, including:
 – Expected carbon prices ($/ton CO$_2$e)
 – Expected timber prices ($/mbf)
 – Biomass fuel prices ($/MMbtu)
 – Wholesale electricity prices ($/MWh)
 – NO$_x$ allowance prices ($/ton)
 – SO$_2$ allowance prices ($/ton)
 – Coal fuel prices ($/MMbtu)

• To incorporate key uncertainties into forward prices over the time horizon of a proposed GHG abatement project (e.g., 100 years), GHG-CAM uses sophisticated statistical tools to generate probability-based forward price curves.
 – User-defined statistical process (GBM, EMR, MR, other)
 – User-defined statistical parameters (std. dev./ volatility, half-life, etc.)
Forward Prices (2 of 2)

CO2 Emissions Price Forecast

Note: This is solely an illustration and does not represent the official views of EPRI.

Notes:
- **Blue Line**: Mean Price
- **Black Line**: Median Price
- **Orange Lines**: 10-90 confidence interval
Forest Carbon Accounting

- Based on regional per-acre data (Birdsey 1996\(^1\))
- Carbon accounting is done across all acres planted
- Calculates dollar cost of carbon “buyback” when the forest is thinned or harvested
- Is based on “net carbon sequestered”
- The quantity of carbon expected to be sequestered in the forest is discounted back to its present value when calculating levelized cost.

Forest Carbon Project Example

- Location: Corn Belt
- Species: Mixed Hardwoods
- Management: Even-Aged
- Site Index: All Sites

Data Source:
- Richard Birdsey (1996), USDA Forest Service
- Land Type: “Regional estimates of timber volume and forest carbon for managed timberland”
- Species and Management Intensity: “Corn Belt, mixed hardwoods, former pasture, even-aged management, all sites”
Example “Birdsey” Data

Regional Estimates of Timber Volume and Forest Carbon for Managed Timberland, Corn Belt, mixed hardwoods, former cropland, even-aged management, all sites

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Timber Volume</td>
<td>Carbon Storage</td>
<td>Carbon Storage</td>
</tr>
<tr>
<td></td>
<td>Standing Volume</td>
<td>Carbon in Live Vegetation</td>
<td>Other Organic Carbon</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>37</td>
</tr>
<tr>
<td>5</td>
<td>298</td>
<td>16</td>
<td>41</td>
</tr>
<tr>
<td>10</td>
<td>746</td>
<td>36</td>
<td>45</td>
</tr>
<tr>
<td>15</td>
<td>1,194</td>
<td>57</td>
<td>49</td>
</tr>
<tr>
<td>20</td>
<td>1,693</td>
<td>80</td>
<td>53</td>
</tr>
<tr>
<td>25</td>
<td>2,193</td>
<td>103</td>
<td>57</td>
</tr>
<tr>
<td>30</td>
<td>2,673</td>
<td>125</td>
<td>61</td>
</tr>
<tr>
<td>35</td>
<td>3,152</td>
<td>147</td>
<td>65</td>
</tr>
<tr>
<td>40</td>
<td>3,624</td>
<td>168</td>
<td>69</td>
</tr>
<tr>
<td>45</td>
<td>4,096</td>
<td>190</td>
<td>73</td>
</tr>
<tr>
<td>50</td>
<td>4,543</td>
<td>210</td>
<td>77</td>
</tr>
<tr>
<td>55</td>
<td>4,991</td>
<td>231</td>
<td>81</td>
</tr>
<tr>
<td>60</td>
<td>5,405</td>
<td>250</td>
<td>84</td>
</tr>
<tr>
<td>65</td>
<td>5,819</td>
<td>269</td>
<td>88</td>
</tr>
<tr>
<td>70</td>
<td>6,199</td>
<td>287</td>
<td>90</td>
</tr>
<tr>
<td>75</td>
<td>6,580</td>
<td>305</td>
<td>93</td>
</tr>
<tr>
<td>80</td>
<td>6,925</td>
<td>321</td>
<td>95</td>
</tr>
<tr>
<td>85</td>
<td>7,270</td>
<td>337</td>
<td>96</td>
</tr>
<tr>
<td>90</td>
<td>7,585</td>
<td>351</td>
<td>98</td>
</tr>
<tr>
<td>95</td>
<td>7,900</td>
<td>366</td>
<td>99</td>
</tr>
<tr>
<td>100</td>
<td>8,187</td>
<td>379</td>
<td>100</td>
</tr>
<tr>
<td>105</td>
<td>8,475</td>
<td>392</td>
<td>101</td>
</tr>
<tr>
<td>110</td>
<td>8,743</td>
<td>404</td>
<td>102</td>
</tr>
<tr>
<td>115</td>
<td>8,993</td>
<td>416</td>
<td>103</td>
</tr>
<tr>
<td>120</td>
<td>9,123</td>
<td>422</td>
<td>104</td>
</tr>
</tbody>
</table>
Project Specific Assumptions

<table>
<thead>
<tr>
<th>Project Specific Assumptions</th>
<th>No Harvest</th>
<th>Donate Land</th>
<th>Thinning</th>
<th>Harvest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tons C to Tons CO2e</td>
<td>3.67</td>
<td>3.67</td>
<td>3.67</td>
<td>3.67</td>
</tr>
<tr>
<td>Option period (Yrs)</td>
<td>NA</td>
<td>5</td>
<td>50</td>
<td>71-100</td>
</tr>
<tr>
<td>Project Lifetime (Yrs)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Local Property Tax Rate</td>
<td>2.50%</td>
<td>2.50%</td>
<td>2.50%</td>
<td>2.50%</td>
</tr>
<tr>
<td>Receive Tax Benefits for Donation?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>GHG Buyback (%)</td>
<td>0%</td>
<td>0%</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td># of Acres Planted</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Construction Period (Years)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Annual Forest Management Cost ($ / acre)</td>
<td>$5.00</td>
<td>$5.00</td>
<td>$5.00</td>
<td>$5.00</td>
</tr>
<tr>
<td>Annual Fire Protection Cost ($ / acre)</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Annual Insurance Cost ($ / acre)</td>
<td>$0.75</td>
<td>$0.75</td>
<td>$0.75</td>
<td>$0.75</td>
</tr>
<tr>
<td>Annual Carbon Monitoring Cost ($ / acre)</td>
<td>$0.50</td>
<td>$0.50</td>
<td>$0.50</td>
<td>$0.50</td>
</tr>
<tr>
<td>Annual Carbon Verification Cost ($ / acre)</td>
<td>$0.50</td>
<td>$0.50</td>
<td>$0.50</td>
<td>$0.50</td>
</tr>
<tr>
<td>Annual Carbon Certification Cost ($ / acre)</td>
<td>$0.75</td>
<td>$0.75</td>
<td>$0.75</td>
<td>$0.75</td>
</tr>
<tr>
<td>Expected Net Lumber Price (Thinning) ($ / mbf)</td>
<td>NA</td>
<td>NA</td>
<td>$370.00</td>
<td>$370.00</td>
</tr>
<tr>
<td>Expected Net Lumber Price (Harvest) ($ / mbf)</td>
<td>NA</td>
<td>NA</td>
<td>$370.00</td>
<td>$370.00</td>
</tr>
</tbody>
</table>

Note:
- Yellow-colored cells are user-defined.
- Red-colored cells are user-defined but in a different location in the model.
- Black-colored cells are locked to user input.
Forest Carbon Module Scenarios (1 of 3)

- **“Base Case”**
 - **No Harvest**: Company buys land, plants trees and retains ownership for 100 years; no timber harvest.

- **Multiple “Project Cases”:**
 - **Donate**: Company buys land, plants trees, and donates land in year 5 to a qualified land management agency or non-profit; company retains carbon rights over 100 years.
 - **Thin**: Company buys land, plants trees and retain ownership. Forest is thinned in year 50, 60, and 70.
 - **Harvest**: Same as “Thin”, and forest is “optimally” harvested between year 71-100.

- **“All Options” Case**
 - Base case is No Harvest
 - ROC determines optimal forest management regime based on all available management options (i.e., Donate, Thin and Harvest)
Forest Carbon Scenarios (2 of 3)

- Donate, Thin and Harvest are “real options”
 - For an electric company that owns forest land, these land management actions are real options that can be “exercised” anytime during the forest rotation.
 - The “exercise price” for each of these real option is the present value of the discounted capital costs associated with conducting the specific activity.

- Option Exercise Rules
 - “Donate” option only can be exercised in project year 5.
 - “Thin” option only can be exercised in year 50.
 - “Harvest” option can be exercised in any year 71-100.

- Carbon “Buyback”
 - “Buyback” refers to the amount of CO$_2$e an electric company may need to purchase, or otherwise acquire, to “net out” the CO$_2$e released into the atmosphere from timber harvesting and related post-harvest activities.
 - GHG-CAM incorporates carbon buyback for thinning and final timber harvests.
 - Users can choose buyback percentage (e.g., 0-100% buyback).
Forest Carbon Module Scenarios (3 of 3)

Base Case

- NoHarvest

Project Cases

- Donate
 - (Yr 5?)

- Thin
 - (Yr 50-70?)

- Harvest
 - (Yr 71-100?)
Analytic Results

Summary of Analytic Results -- Forest Carbon Sequestration

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Stochastic</th>
<th>Real Option</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Harvest</td>
<td>Donate Land</td>
</tr>
<tr>
<td>Expected Carbon Price Year 0 ($/ton CO2e)</td>
<td>$3.00</td>
<td>$3.00</td>
</tr>
<tr>
<td>GHG Emissions Reductions (tons CO2e)</td>
<td>13,212</td>
<td>13,212</td>
</tr>
<tr>
<td>GHG Emissions Reductions (2010-2012)</td>
<td>405,535</td>
<td>405,535</td>
</tr>
<tr>
<td>PV GHG Emissions Reductions (2004-2104)</td>
<td>59,852</td>
<td>59,852</td>
</tr>
<tr>
<td>Levelized GHG Abatement Cost (After-Tax)</td>
<td>$(7.68)</td>
<td>$(5.33)</td>
</tr>
<tr>
<td>PV $ Net Income / PV Ton CO2e (2004-2104)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Analysis Perspectives** – Final results are displayed for deterministic, stochastic, and real-options analysis perspectives.
- **Carbon Prices** – Final results also are displayed based on:
 - $0 / ton CO2e expected future carbon prices (“compliance cost” perspective)
 - $+ / ton CO2e expected future carbon prices (“market” perspective)
GHG Emissions Reductions

Forest Carbon Sequestration
GHG Emissions Reductions
(Stochastic & Real Options Analysis Results)
Summary

• Forest C sequestration leads to **indirect** GHG emissions offsets
 – C sequestration is relatively slow during the early years of the rotation.
 – Discounting reduces the present value of the “back loaded” C sequestration that takes place in the later years.

• “Levelized cost” provides a powerful, analytically consistent metric that can be used to compare different GHG emissions reduction options. Levelized cost” depends on which analysis “perspective” is used.

• “Donate” appears to be the best option for forest sequestration in our example of mixed hardwoods planted in the Midwest U.S.
 – Levelized cost = ~$5.33 **loss** of net income per ton CO$_2$e (5.33/ton CO$_2$e).
 – This option would be exercised 100% of the time.
 – Levelized cost is between $6-$8.00/ton CO$_2$e for the No Harvest, Thin and Harvest scenarios.

• Real options analysis can help an electric company to select the optimal strategy for implementing each type of GHG abatement.
Contact Information

Adam Diamant
Manager, Economic Analysis
Global Climate Research Program

Electric Power Research Institute (EPRI)
3412 Hillview Ave.
Palo Alto, CA 94304
phone: 510-260-9105
fax: 510-237-5545
email: adiamant@epri.com