Projecting Private Forest Investment and Forest Carbon with the Forest and Agricultural Sector Optimization Model – Green House Gas

Lucas Bair and Ralph Alig
USDA Forest Service
Corvallis, OR
Timberland and Carbon Sequestration

- Five factors that drive economics of storing carbon in forests for extended periods (Stavins and Richards 2005)
 - Management practices for various forest types and regions
 - Opportunity cost of land and agricultural commodity prices
 - Disposition of forest products
 - Policy scenarios
 - Parameters such as interest rate
Timberland in the United States, 2002
Yield and Private Timberland

NIPF - South Central

Cubic Feet (000) vs Age

Age

Cubic Feet (000)

Afforested Pine
Planted Pine
Natural Pine
Economics and Private Timberland

• Positive returns from intensive management (Alig et al. 1999)
• NIPF owners respond to investment incentives (Alig et al. 1990)
• FI and NIPF maximize profits (Newman and Wear 1993)
Forest and Agricultural Sector Optimization Model - GHG

- FASOMGHG is a dynamic, nonlinear programming model of the forest and agricultural sectors in the United States
- Model private timberland owner behavior
- Forest carbon sequestration accounting
FASOMGHG Timberland Regions
<table>
<thead>
<tr>
<th>Cohort</th>
<th>Region</th>
<th>Land Class</th>
<th>Owner</th>
<th>Type</th>
<th>Site Class</th>
<th>MIC</th>
<th>SWSAW</th>
<th>HWSAW</th>
<th>SWPULP</th>
<th>HWPULP</th>
<th>SWFUEL</th>
<th>HWFUEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLUS5</td>
<td>SE</td>
<td>FORONLY</td>
<td>FI</td>
<td>PLNT_PINE</td>
<td>HI</td>
<td>0.036038</td>
<td>0.000022</td>
<td>0.308124</td>
<td>0.000988</td>
<td>0.016217</td>
<td>0.00011</td>
<td></td>
</tr>
<tr>
<td>PLUS10</td>
<td>SE</td>
<td>FORONLY</td>
<td>FI</td>
<td>PLNT_PINE</td>
<td>HI</td>
<td>0.072076</td>
<td>0.000045</td>
<td>0.616249</td>
<td>0.001977</td>
<td>0.032434</td>
<td>0.00022</td>
<td></td>
</tr>
<tr>
<td>PLUS15</td>
<td>SE</td>
<td>FORONLY</td>
<td>FI</td>
<td>PLNT_PINE</td>
<td>HI</td>
<td>0.779931</td>
<td>0.001377</td>
<td>1.269542</td>
<td>0.047999</td>
<td>0.066818</td>
<td>0.005333</td>
<td></td>
</tr>
<tr>
<td>PLUS20</td>
<td>SE</td>
<td>FORONLY</td>
<td>FI</td>
<td>PLNT_PINE</td>
<td>HI</td>
<td>2.031726</td>
<td>0.016194</td>
<td>1.579206</td>
<td>0.131183</td>
<td>0.083116</td>
<td>0.014575</td>
<td></td>
</tr>
<tr>
<td>PLUS25</td>
<td>SE</td>
<td>FORONLY</td>
<td>FI</td>
<td>PLNT_PINE</td>
<td>HI</td>
<td>2.786453</td>
<td>0.029701</td>
<td>1.762305</td>
<td>0.15641</td>
<td>0.092753</td>
<td>0.017379</td>
<td></td>
</tr>
<tr>
<td>PLUS30</td>
<td>SE</td>
<td>FORONLY</td>
<td>FI</td>
<td>PLNT_PINE</td>
<td>HI</td>
<td>3.278515</td>
<td>0.055283</td>
<td>1.677087</td>
<td>0.149262</td>
<td>0.088267</td>
<td>0.016585</td>
<td></td>
</tr>
<tr>
<td>PLUS35</td>
<td>SE</td>
<td>FORONLY</td>
<td>FI</td>
<td>PLNT_PINE</td>
<td>HI</td>
<td>3.547248</td>
<td>0.071029</td>
<td>1.622923</td>
<td>0.143444</td>
<td>0.085417</td>
<td>0.015939</td>
<td></td>
</tr>
<tr>
<td>PLUS40</td>
<td>SE</td>
<td>FORONLY</td>
<td>FI</td>
<td>PLNT_PINE</td>
<td>HI</td>
<td>3.827785</td>
<td>0.083908</td>
<td>1.558455</td>
<td>0.140244</td>
<td>0.082024</td>
<td>0.015583</td>
<td></td>
</tr>
<tr>
<td>PLUS45</td>
<td>SE</td>
<td>FORONLY</td>
<td>FI</td>
<td>PLNT_PINE</td>
<td>HI</td>
<td>4.117803</td>
<td>0.10496</td>
<td>1.48589</td>
<td>0.129727</td>
<td>0.078205</td>
<td>0.014415</td>
<td></td>
</tr>
<tr>
<td>PLUS50</td>
<td>SE</td>
<td>FORONLY</td>
<td>FI</td>
<td>PLNT_PINE</td>
<td>HI</td>
<td>4.421649</td>
<td>0.116311</td>
<td>1.400189</td>
<td>0.127941</td>
<td>0.073694</td>
<td>0.014216</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Expanded Timberland Data

• Detailed species type
 – South: planted pine, natural pine, oak-pine upland and bottomland hardwood
 – PNWW: Douglas-fir, other softwoods, hardwood

• Detailed management intensity
 – Planted pine
 – Uneven-age management
Afforestation in FASOMGHG

• Detailed planted afforestation
 – South
 • Planted pine – four management intensities
 • Bottomland hardwood
 – Corn Belt
 • Hardwood and softwood
Management Costs in FASOMGHG

• Detailed management costs
 – Land conversion costs
 – Establishment costs
 – Intermediate treatment costs
 • Herbicide
 • Fertilization
 • Precommercial thinning
Preliminary Model Results

- Linear (Natural Regen. in U.S.)
- Linear (Planted in U.S.)
Preliminary Model Results

Graph showing linear trends in acres for different planting types over decades from 2000 to 2090.
Potential Policy Modeling Scenarios

• Private timberland investment
 – Encourage investment
 • Incentives for investment in regeneration and afforestation practices
 – Restricted investment
 • Uncertainty in future markets
 • Limits to investment or restrictions in borrowing
Preliminary Model Results

![Graph showing model results with linear trends and cost implications.](image)
Potential Policy Modeling Scenarios

• Afforestation
 – Carbon credits
 – Farm bill

• Joint production
 – Habitat improvement
 – Recreation
 – Changing landowner objectives
Future Steps

- Management Intensity
- Forest Type
- Public Lands
 - National Forest
 - Other Public
- Additional Policy Scenarios