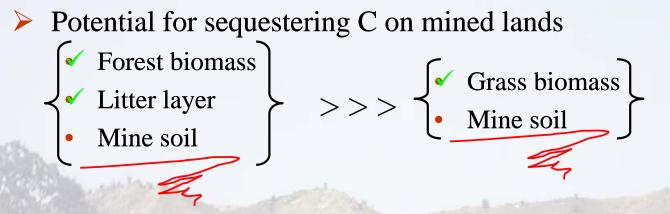
Forest Soil Carbon Spatial Variation and Precision Accounting on Mined Land

by Beyhan Amichev and James Burger



Sponsors: **Powell River Project U.S. Department of Energy**

Third USDA Symposium on Greenhouse Gases and Carbon Sequestration in Agriculture and Forestry Baltimore, Maryland. March 22-24, 2005

Rationale

Statistics

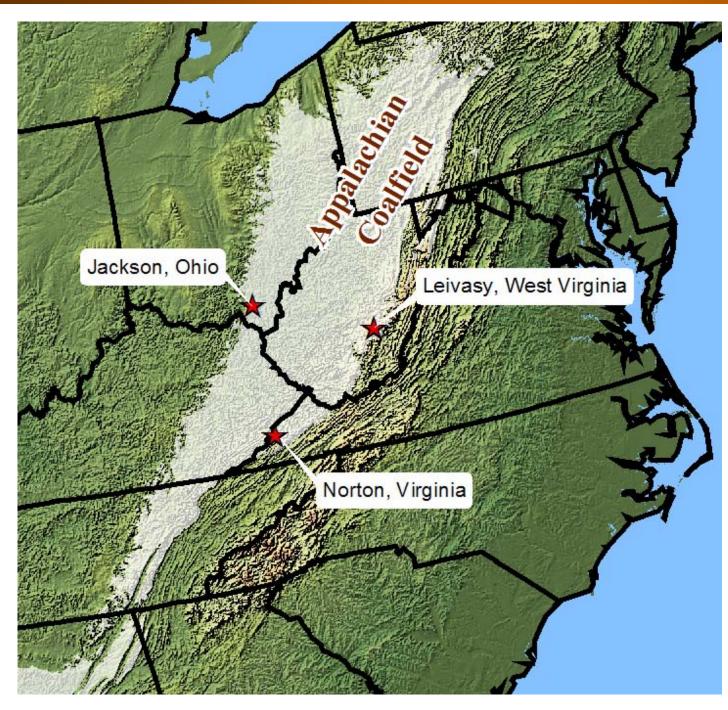
- $4x10^6$ ha mined for coal before 1977 (U.S.D.A., 1979)
- 1.8x10⁶ ha were under coal mining permit in 2001
- Over 600,000 ha (200,000 ha in the east) classified as "disturbed" (U.S. Office of Surface Mining , 2002)

Carbon market incentive

[reforestation project C]

Abandoned grassland

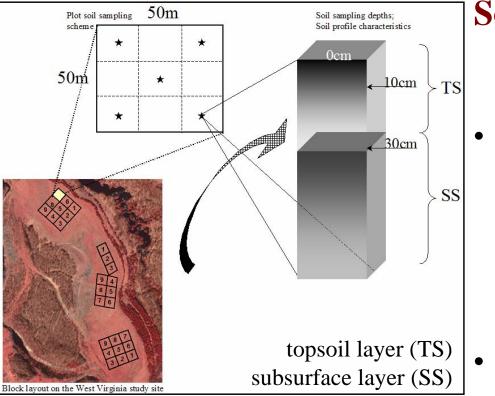
[business-as-usual C]


\$ Carbon credit \$

Study Objectives

- To determine an accurate measure for the concentration of sequestered C on mine soils.
- To determine the spatial variation of sequestered C on reclaimed grassland/pastureland.
- To determine the baseline C sequestration on mined sites reclaimed to grassland/pastureland for C accreditation of reforestation project experiments.

Study Sites


Site reclamation:

•West Virginia -No topsoil -Reclaimed in *early* 1980's

•Ohio -Topsoil (~20cm) -Reclaimed in *late* 1980's

•Virginia -Topsoil (~20cm) -Reclaimed between 2000 and 2003

Soil Sampling Procedures

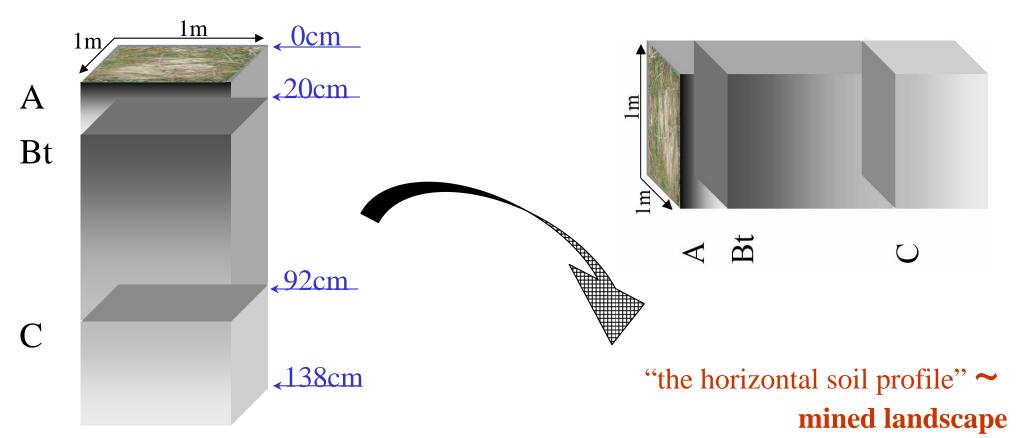
Soil physical and chemical properties (3states x 27plots):

- TS/SS soil sub-sample (<2mm soil): -C concentration (gram C/gram soil) -CN ratio
 - -N concentration (gram N/gram soil) -pH
 - -EC (mmhos cm⁻¹)
- TS/SS composite sample (per 50x50m plot)
 -CFC, percent by volume
 -Soil texture (~%Sand; ~%Silt; ~%Clay)
 -Sandstone (SS) and Siltstone (SiS) percent
- TS/SS soil pit (~ volume 30x30x30cm)
 BD (g cm⁻³) for whole soil
 BD_{Fines} (g cm⁻³)

Soil Analysis procedures: C [%] issues

Measuring plant sequestered C in mine soils:

		Pede	ogenic C	Geog	enic C		
	Methods of Analysis	Soil organic	matter (SOM)	-	Coal	Estimate	
		oxidizable	resistant	(Inorganic C)			
1	Walkley-Black acid dichromate oxidation procedure.	all	Fraction 	removed	Unknown	SOC={Oxidizable SOM}*CF ; Assumes (1) no oxidation of coal, (2) no interference from Cl ⁻ , MnO ₂ , and Fe ²⁺ , and (3) {oxidizable SOM} is ~77% of total SOM.	
2	Loss on ignition (375°C, 12hrs); weight difference.	all	all		Unknown	SOC={SOM}*CF ; Assumes (1) no oxidation of coal and (2) no structural water loss from soil minerals.	
3	C,N [%] elemental analysis (Vario MAX CNS analyzer, elementar, Hanau, Germany).	all	all	all	all	Total C [%]; Represents the absolute total C [%] in the soil.	
4	Thermal oxidation (375°C, 24 hrs): C,N [%] difference; Requires sample pretreatment for inorganic C.	all	all		Unknown	<i>C</i> _{coal} [%]; Requires correction for oxidized coal. Then SOC= <i>Total C</i> [%] - <i>C</i> _{coal} [%]. Carbonates removal pretreatment.	
5	hrs): C,N [%] difference; Requires sample pretreatment for inorganic C. Scanning Electron Microscopy (SEM) analysis after thermal oxidation: Partitioning of Total C from C,N elemental analysis.	all	Unknown [x]		Unknown [y]	[SOM:Coal] volume ratio . Assumes [x]:[y] ratio of captured airborne particles on filter are equal to SOM:coal in sample. Grinding, sieving through 270um sieve, and carbonates removal pretreatments.	

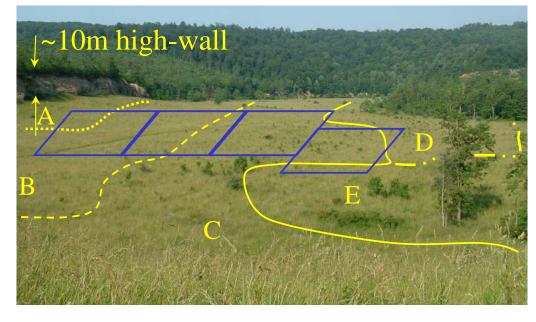

Data Analysis

Soil carbon stock estimation:

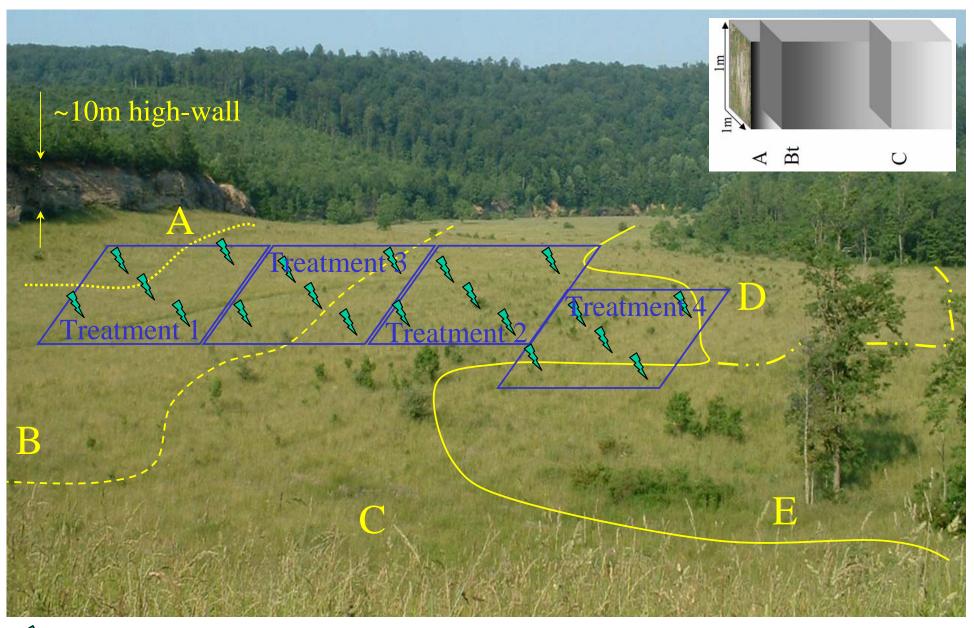
$$C(\text{kg m}^{-2}) = C(\%) * BD_{Fines} (\text{g cm}^{-3}) * \text{Volume}_{Fines} (\%) * LayerDepth(cm) * 1000^{-1}$$

Carbon stock spatial variation

- Carbon stock distribution/stratification maps using ArcGISTM spatial analysis software
 - C stock prediction surface
 - Prediction standard error surface
 - GIS based mean carbon stock estimate

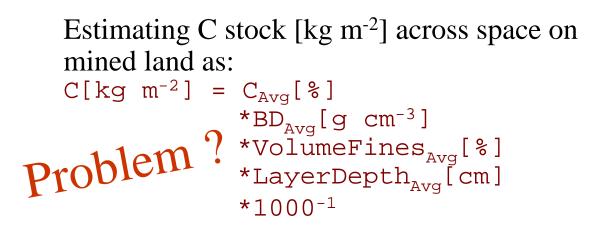

Per horizon (stratum) - approach

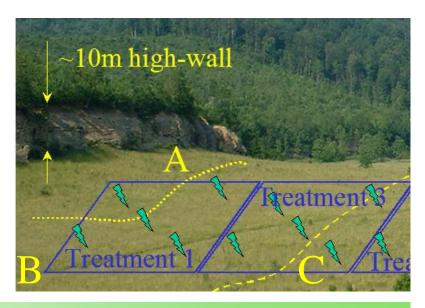
Horizon	C[%]	BD [g cm ⁻³]	Fines [volume %]	Layer Depth [cm]	C [kg m ⁻²]
А	3.520	1.10	91	20	7.047
Bt	0.103	1.35	100	72	1.001
С	0.009	1.45	95	46	0.057
					8.105


Result: $\{0-138 \text{ cm}\}$ profile C stock = 8.105 kg m⁻²

Per profile (weighted by layer depth) approach

Horizon	C[%]	BD [g cm ⁻³]	Fines [volume %]	Layer Depth [cm]		
A	3.520	1.10	91	20		
Bt	0.103	1.35	100	72		
С	0.009	1.45	95	46		
Weighted Avg.	0.5669	1.347	97.029	138		
C [kg m ⁻²] =	10.225					
Over-estimation =	26.2	%				




Data Analysis: C stock across space

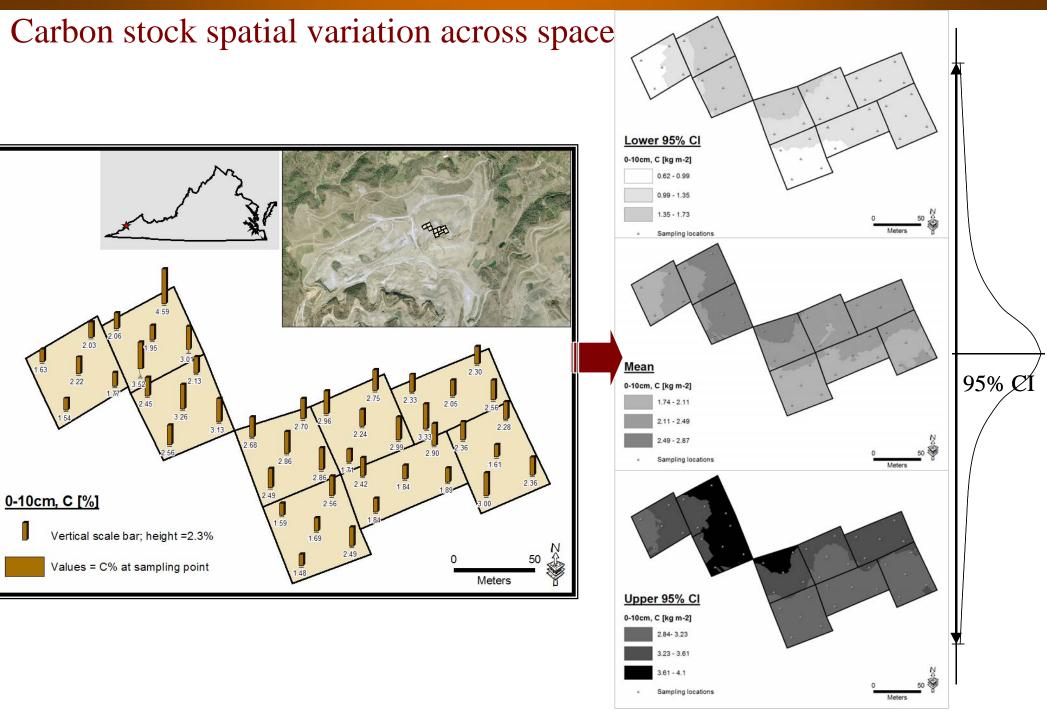
represents mine soil sampling location (5 sub-samples per plot)

Data Analysis: C[kg m⁻²] issues

Solution: Site stratification!

Methods:

- 1. Intensive field reconnaissance
 - Vegetation as indicator
 - Sample/feel the soil
 - Be a detective "How would a miner reclaim the site?"
- 2. Geospatial statistics
 - Ordinary kriging in ArcGIS TM geospatial software for surface modeling
 - Spatial distribution maps for each soil property to be used for C[kg m⁻²] estimation


Results: Mine soil properties

Average values for 9 physical and chemical soil properties of topsoil and overburden spoil materials of two depth categories, 0-10cm and >10cm.

Site				OHI	0			VIRGINIA						WEST VIRGINIA							
Material type		Topsoil Sp			Spo	oil	Topsoil			Spoil			Spoil			range					
Variable\Depth category		0-10	cm	10-[X]cm	[X]-50)cm	0-10cm 10-[Y]cm		0-10cm [Y]-30cm		0-10	10-30	10-30cm		max					
C [%]	[C _g /soil _g *100]	1.49	dg	0.38	b	0.66	b	1.92	cd	1.49	de	1.90	cefg	2.38	С	3.43	а	1.52	df	0.38	3.43
CN	[ratio]	12.33	С	8.99	С	13.51	С	23.92	b	25.08	b	27.40	b	33.34	а	12.55	С	13.93	С	8.99	33.34
BD _{Fines}	[g cm ⁻³]	1.46	ab	1.41	ace	1.63	а	1.23	cd	1.214	cfgh	1.36	bdef	1.37	bc	1.14	dg	1.14	dh	1.14	1.63
CFC	[%]	7.74	а	12.15	ab	19.93	b	40.56	С	41.11	С	56.59	de	57.54	df	51.92	d	57.92	ef	7.74	57.92
pН	-	5.88	а	6.31	ab	6.84	bc	5.99	а	5.93	а	6.38	acde	6.73	be	6.12	а	6.66	bd	5.88	6.84
EC	[mmho cm ⁻¹]	0.10	а	0.37	bc	0.47	b	0.26	cde	0.36	bd	0.34	bce	0.28	cde	0.21	ace	0.11	а	0.10	0.47
SS	[%]	22.96	b	5.00	b	16.48	b	63.00	ас	83.89	а	61.25	ad	54.58	cd	9.07	b	9.81	b	5.00	83.89
Sand	[%]	41.89	а	33.00	ab	28.63	b	53.20	С	56.00	се	56.00	cf	66.50	def	70.00	d	61.19	cd	28.63	70.00
Topsoil	[cm]	20.84		31.39		19.91		24.22		29.12		N/A		17.03		N/A		N/A		17.03	31.39

* [X] and [Y] indicate the total depth of the topsoil layer in Ohio and Virginia study sites, respectively.
**Mean values for soil properties in Ohio, Virginia, and West Virginia followed by the same letter are not significantly different at the 0.05 alpha level (PROC GLM in (SAS®); Tukey's HSD means comparison)

Results: Kriging example

Results: *Total soil C stock* [kg m²]

Total soil carbon stock estimates in the 0-10cm and 0-100cm mine soil profile

		0-10)cm	0-100	cm	# samples	Topsoil		
Site	Plot	C Std.E		С	Std.Err.	# samples	depth		
		[kg m ⁻²]	Ν	[cm]					
VA	1	1.153	0.1121	15.779	1.2604	9	22.0		
	2	2.274	0.1728	21.717	2.4190	9	29.7		
	3	1.646	0.2138	13.619	1.3508	9	8.0		
Ave	rage	1.691	0.131	17.038	1.1837	27	19.9		
No	stra	tificatio)n:	1	<u>2.27</u> .928	74 2.620)		
With stratification: [GIS surface modeling]									

Conclusions

➢ <u>Rule of thumb</u>:

C variation on mined grasslands does *not* follow the "rules" of the rest for the world, topography, aspect, etc., due to their anthropogenic origin, as opposed to pedogenic origin.

Total C concentration varied between 1.49 and 3.43 %
[C_{gram}/Soil_{gram}*100] within in the 0-10cm soil layer, and varied between 0.38 and 2.38 % for greater soil depths, >10cm.

- Total C stock estimates ranged from 1.69 and 2.64 kg C m⁻² within in the 0-10cm soil layer, and between 7.68 and 17.04 kg C m⁻² for the 0-100cm soil profile.
- GIS surface modeling software can be used with confidence for C stock spatial distribution mapping on mined land.

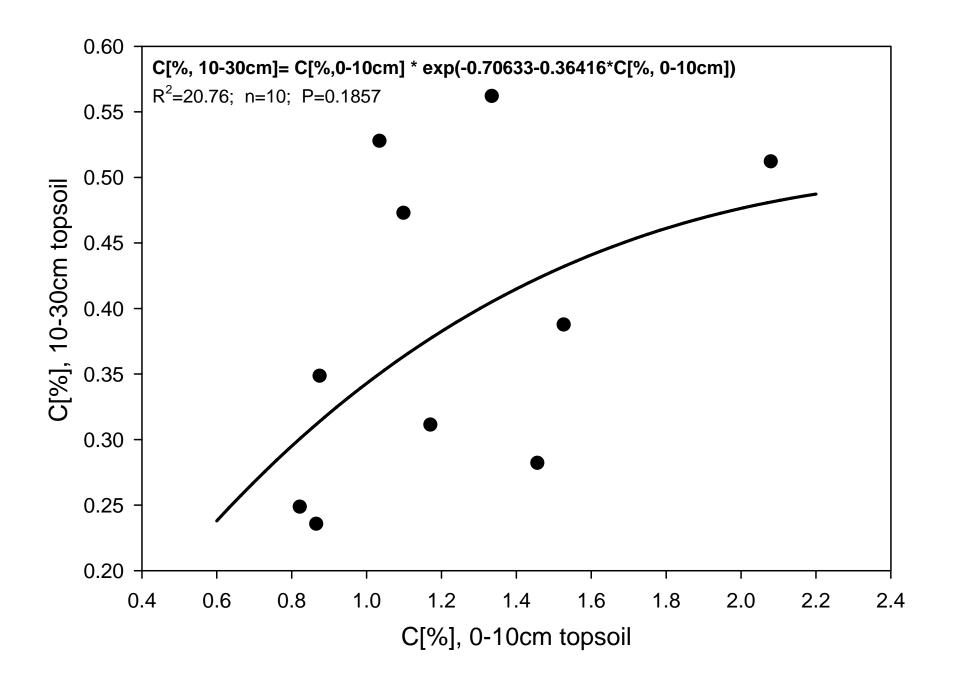
Additional take-home messages

≻Mine landscape stratification is a *must*.

> GIS spatial analysis packages can be used for site stratification that will aid in reducing the costs associated with mine soil sampling.

➤If properly carried out site stratification can greatly improve the accuracy of C accounting on mined land.

➤ Without stratification of mined lands the C stock estimates produced via soil sample properties averaging will not be representative of the sampled mine soil but rather that of a non existent, "mutant" soil.


<Summary>

Rule of thumb:

C variation on mined grasslands does *not* follow the "rules" of the rest for the world, topography, aspect, etc., due to their anthropogenic origin, as opposed to pedogenic origin.

- Total C concentration varied between 1.49 and 3.43 %
 [C_{gram}/Soil_{gram}*100] within in the 0-10cm soil layer, between 0.38 and 2.38 % for the 0-100cm soil profile.
- Total C stock varied between 1.69 and 2.64 kg C m⁻² within in the 0-10cm soil layer, between 7.68 and 17.04 kg C m⁻² for the 0-100cm soil profile.
- GIS surface modeling software can be used with confidence for C spatial distribution mapping.

<Ohio sites: *C% by depth*,topsoil>

