

Impact of Soil Redistribution on the Mass Balance of Soil Organic Carbon in Hummocky Glacial Topography, Iowa

E.R. Venteris, G.W. McCarty, J.C. Ritchie, T.E. Fenton and T.C. Kaspar Beltsville Agricultural Research Center Beltsville MD, Iowa State University, National Soil Tilth Laboratory Ames IA

Introduction

The Soil Organic Carbon (SOC) budget is a function of the balance between vegetative production, oxidative losses, and mass transport by water/ tillage. Models for spatiotemporal prediction are needed that account for mass transport processes in a realistic manner. Past work has concentrated on water erosion but has neglected water deposition and soil transport by tillage. Understanding these processes is essential to successful numerical modeling and for the placement of sites to monitor SOC changes for carbon accounting. We have embarked on a study near Ames, lowa to investigate these issues.

Approach

To better understand and model these processes, two high-resolution (25 m) soil sample grids were collected on separate agricultural fields (chisel ploughed, corn soybean rotation). SOC and ¹³⁷Cs (to model erosion/deposition) were measured for each soil sample point. Five meter resolution data were collected with GPS to provide topographic information (DEM).

- Sampling does not completely cover watershed
- 1. Missing samples at edges of basins
- 2. Spaces between samples
- Various modeling approaches were used:
- Kriging can be used for watersheds well-covered by sample arrays Linear regression models and Cokriging based on wetness index can be used for
- watersheds with incomplete sampling.
- Ordinary Kriging with detrending has not been conducted yet but planned.

Patterns of soil redistribution in field site based or wetness index model. Red colors represent soil lo All basins in this landscape show slight negative balance of sediment. Mass balance estimates for soils based on kriging, cokriging (vetness index), and correlation modeling (vetness index) give similar values for basins 1 and 2 indicating that models are guite stable (Table 1).

Patterns of soil redistribution in field site based on a wetness index model. Analysis indicates that basin 5 contains substantial imported sediment (9.4 Mtha/y) which differs from other basins within the two field sites.

Contact Info Enk R. Venteris, Ph.D. GIS Specialist (Geologist/Soil Scientist) Energy Resources Group Ohio Division of Geological Survey 2045 Morse Rd., BLDG. C, Columbus OH 43225 Voice 614 265 6459 Fax 614 447 1918 Email: Enk. Venteris & drin state ch.u.s

Findings

Calibration data for model based on wetness index

A unique characteristic of the study fields is that they contain small (100 m from bottom to top, 5 meters relief) depressions which are generally thought to be closed depositional systems. Hence the mass balance of soil transport should sum to zero. Regression models involving wetness index were found useful for modeling soil redistribution and soil carbon distribution within this landscape. Ordinary kriging and cokriging (wetness index) models were also used. At field site 1, three different models converged on mean soil loss estimates of 1.7:04. And 5.4:04. M tha¹ y¹) of two basins. These numbers are within potential losses/ gains from wind erosion ($\pm 2.5-5$ Mt ha¹ y¹). At field site 2, mass balance estimates provided strong evidence of significant deposition (9.4 Mt ha¹ y¹) of imported sediment within basin number 5. Adjustments in models for the two types of basins within this field will be needed for accurate mass balance accounting. Erosion/deposition models based on ¹³⁷Cs concentration (Walling and He method) are giving reasonable results and do not show systematic bias towards erosion or deposition.

Conclusions

The site is especially useful for the calibration of spatio-temporal soil and carbon erosion/deposition models. Mass imbalances can be used to expose biases in the modeling algorithms. These results demonstrate the need to take into account landscape redistribution of carbon when using the benchmark approach to assess temporal changes in SOC inventory.