Maine Forestry Greenhouse Gas Mitigation Options

Thomas D. Peterson PSU James E. Smith USFS Jack D. Kartez USM

Maine PL 237

- Passed in 2003, first in nation
- State greenhouse gas mitigation plan
- Stakeholder process
- Forest carbon sequestration and other measures across all sectors
- NEG/ECP targets and timetables
- Consensus recommendations to legislature
- Non consensus recommendations to DEP

The challenge

Figure 1: Emissions Baseline and Target

3/22/05

End product = policy portfolio

	Mechanism							
Sector	Codes & Standards	Market Mechanisms	Funding Mechanisms	Voluntary Agreements	Technical & Financial Assistance	Information & Education	Pilots & Demos	Reporting & Disclosure
Agriculture								
Commercial, Residential And Industrial								
Energy Supply								
Forestry								
Transportation and Land Use								
Waste Management								
Cross Cutting Issues								

Forestry Group Participants

- Stakeholders
- Public
- Technical work groups
- Forest experts group
- Technical facilitator
- Lead consultant
- State agency observers

Consensus process

- Multi-party
 - Stakeholders and technical work groups
- Multi-issue
 - Variety of sectors, control strategies, objectives
- Science intensive
 - Preliminary and joint fact finding
- Evaluative facilitation
 - Process facilitation and technical consultants
 - Alternative solutions and scenarios

Technical process

- Decisions by stakeholder group
 Final policy recommendations
- Advice by technical work groups
 - Joint fact finding and policy development
 - Joint model development (forestry group)
 - Iteration, sensitivity analysis and alternative policy design

Technical work plan

- Diagnosis
 - Emissions inventories from 1990 to 2000
 - Base case projections to 2010, 2020
 - Base actions and knowledge
 - Conceivable options beyond the base
- Evaluation
 - Priorities for analysis and preliminary impacts
 - Cost effectiveness estimates for options
 - Alternative policy design
 - Final option selection and design

Accounting principles

- Comprehensive
 - Land use change, forest types, ownerships, etc.
 - Pre harvest and post harvest biomass
- Consistent
 - Across sectors
 - Across other jurisdictions (as possible)
- Consumption based
 - Include imports and exclude exports of HWP's
- Transparent
 - Data sources, methods, assumptions

3/22/05

FORCARB accounts

- Ecosystem biomass
 - Live and dead standing trees
 - Understory
 - Forest floor and coarse woody debris
 - Forest soils
- Revisions
 - New tree growth and soil carbon equations
 - New protocol for land use change impacts
 - Use 1982 and 2003 data for a static baseline

Maine survey data on FIA permanent plots available for 1982, 1995, and 2003

Carbon estimates are based on tree species and dimensions, forest type, volume of growing stock, and stand age.

Pre-harvest carbon flux

3/22/05

HARVCARB accounts

• Harvested wood products biomass

- Durable wood products
- Landfills
- Energy recapture
- Decay
- Revisions
 - Use state based HWP estimates
 - Imports/exports from Maine Wood Processor Reports
 - Add energy displacement from building materials

Maine Carbon in Harvested Wood Products

- Carbon sequestered in products in use and landfills (HARVCARB)
- Energy displacement from building materials displacement (CORRIM)
- Maine annual Wood Processor Reports
- Stock change accounting approach

HARVCARB

- Allocates carbon over time since harvest
- Based on quantity of roundwood harvested
 - softwood versus hardwood
 - pulpwood versus sawtimber

Maine roundwood data

Imports and Exports

TDP/JES/JDK

Volumes classified according to product and species group

	discusse.	White and Red
County	and Fire	- Nee
ANDROSCOGNIN	723	11,798
AROOATOOE	34,697	1,214
CUMBERLAND	1,418	27,649
FRANELIN	33,242	9,287
HANCOCE	44,639	6,516
CENNEREC:	3,234	18,318
CNOC	5,122	2,613
LINCOLN	4,508	6,900
OSPORD	35,209	36,238
PENOISCOT	68,689	8,819
PISCATAQUIS	68,245	1,710
AGADAHOC	454	4,960
NOMERSET	48,811	14,996
OGLAD	12,833	3,412
WASHINGTON	31,595	10,000
YORE	151	30,584
Motor wood processed	392,079	211,136
Experted from Make arithmet	100.000	1.55
presenting:	201,012	4.04
Total harmontel	200,918	111.486
foresta		
Imported from out of states	90,382	188,508

Post-harvest carbon flux

3/22/05

Maine Forest Carbon Baseline

Carbon Pool	Annual Flux	
	(Mt/year)	
Forest, biomass	-0.796	
Nonforest conversion credit	0.379	
Forest, non-living	-0.396	
Nonforest conversion credit	0.187	
Soil, forest type change	-0.206	
Nonforest conversion credit	-0.071	
HWP, produced & processed in ME	0.539	
HWP, imported then processed in ME	0.169	
Maine forest carbon baseline	-0.196	
TDP/JES/JDK		19

Key findings

- Carbon focused in maple v. spruce systems
- Carbon focused in trees and forest floor
- Age of converted forests greater than average
- Net carbon impacts of land use change (permanent land clearing) very large
- Species shifts have low impact on soil carbon
- Average age of all stand types declined significantly

Carbon densities by stand type

Maine Forests - MTC Per Acre By Forest Type

3/22/05

Carbon accounts for major types

Maine Forest Carbon Totals By Forest Type

Age of forest stands 1982 v. 2003

Maine Forest Stand Ages 1982 v. 2003 (wtd. Avg. 58.2)

Poorly stocked acres v. species

Maine Poorly Stocked Forests 2003

White/Red/Jack Pine Spruce/Fir Oak/Hickory Elm/Ash/Red Maple Maple/Beech/Birch Aspen/Birch

3/22/05

Shift in forest types 1982 v. 2003

3/22/05

Soil carbon v. species

Soil Carbon v. Tree Species

3/22/05

Base case projections

- Linear extrapolation of 1982 v. 2002 stock changes (flat line projection)
 - FORCARB2 biomass accounts
 - FIA trend analysis with confirmation by NRI
 - HARVCARB coefficients
 - Imports/exports from Maine Wood Processor Reports
- Assumptions
 - No change in management practices or markets
 - No change in land use trends
 - No forest health or climate change

Forest stand growth scenarios

Forest Growth Scenarios - NE Maple/Beech/Birch

3/22/05

Policies considered

- Pre harvest biomass
 - Forestland protection
 - Afforestation, reforestation, increased stocking
 - Density management
 - Rotation age
 - Fertilization
- Post harvest biomass
 - Durable wood products
 - Biomass feedstocks

Policies quantified

- Reduced conversion of forestland cover (carbon storage)
- Increased stocking of poorly stocked stands (carbon storage)
- Density management through early commercial thins & regular light harvests (carbon storage and energy displacement)
 - Expanded wood products use
 - Expanded biomass energy feedstocks

Policies for further consideration

- Afforestation (carbon storage)
 - Low acreage potential
- Extended rotation age (carbon storage and energy displacement)
 - Complex modeling, mixed effects
- Short rotation woody crops (carbon storage and energy displacement)
 - Uncertain acreage and techniques

Full life cycle analysis

- Time period two scenarios
 - Effects within 2010-2020 compliance period
 - Effects beyond compliance period (full generation)
- Direct and indirect impacts
 - Direct/within sector: all carbon accounts and categories
 - Indirect/outside sector: energy supply, buildings, waste management, transportation
- Discounting
 - No discounting of GHG impacts
 - Costs discounted

Forestry calculator

Proposed Forestry Option: X	MTCO2e
Acres treated by forest type 2005-2020	Proposed
Cords removed/reserved per acre	Proposed
MTCO2e removed/reserved per acre (2.079 MT CO2e/cord)	>
Annual MTCO2e removed/reserved	>
% Harvested Biomass To/From Wood Products	Proposed
MTCO2 to/from saw timber (durable wood), or pulpwood	>
Products in use – carbon storage	+
<i>Landfill</i> – carbon storage	+
Biomass energy – carbon emission	-
Displaced energy – carbon reduction	+
Other WP emission (processing residue) – carbon emission	-
Forest Sequestration – carbon storage	+
Logging residue – carbon emission	-
Building materials substitution – carbon reduction	+
Stand mortality – carbon emission or reduction	+ -
Forest floor/CWD decay – carbon emission	+ -
Total GHG Savings	SUM
% Biomass To/From Energy Recapture	Proposed
Biomass energy – carbon emission	-
Displaced energy – carbon reduction	+
Forest Sequestration – carbon storage	+
Logging residue – carbon emission	-
Stand mortality – carbon emission or reduction	+ -
Forest floor/CWD decay – carbon emission	+ -
Total GHG Savings	SUM

Option Total GHG Savings

SUM

Short v. long period of analysis

Maine Forestry Options - 15 v. 58 Yr. Sequestration

3/22/05

GHG reductions and costs

State Forestry Mitigation Policy Option	Annual GHG Reductions In 1000's MTCE	Annualized Dollar Costs Or Savings Per MTCE
Reduced Conversion Of Forest To Nonforest Cover	376	\$-23.75 (cost savings) - \$21.85
Increased Stocking Of Poorly Stocked Forestlands	531	\$3.72
Early Commercial Thins, Regular Light Harvests	239 - 332	\$2.20 - \$11.88

Cumulative impacts of forestry

- 17 percent of total planned state emissions reductions in Maine across all sectors
 - Full life cycle analysis
 - Sustainability assumptions
 - Long time period (full generation tree growth)
- Closed the gap to meet the NEG/ECP target

Regional applicability

- Consensus building process
- Policy framework
 - Integration of pre harvest and post harvest biomass
- Options and policy designs
 - Can be scaled to new states for preliminary analysis
- Carbon flux modeling system
 - FORCARB in all states, HARVCARB in all regions
- Forest carbon calculator
 - Regional data provides a default; data can be calibrated to the state level

Information gaps

- Developed lands carbon flux
- Wetlands carbon flux
- HWP storage and displacement
- State v. regional data
- Substate mapping
- Other?

Why bother?

- Diagnosis leads to better policy design and direction
 - Counterintuitive findings are common
 - Customers are built into solutions
- Consensus policies reduce conflict and risk
 - Two heads are better than one
 - Flexibility and diversification happen
 - Agreements beat tribalism

Significant contributions

- Ken Laustsen, Maine Forest Service
 - helped interpret survey data and provided LUC estimates
- Linda Heath, USDA Forest Service
 - ongoing development of FORCARB and national forest carbon budgets