

Management practices such as crop rotation,

tillage, and fertilization can influence soil

biological activities through their effects on

the quantity, structure, and distribution of soil

**Objective** 

The objective of this study was to evaluate

the effects of different management practices

Materials and Methods

> Soil samples were taken in 2003-2004 at

and Tribune at 0-5 and 5-15 cm.

N) kg N ha-1 for Hays.

wheat-wheat (W/W).

Measurements

three locations: Ashland Bottoms, Hays,

> Tillage systems: Conventional tillage (CT),

reduced tillage (RT), no-tillage (NT). Native

prairie sod (SOD) was included in Tribune

> N rates: 0 (0-N), 22 (22-N), 45 (45-N), 67 (67-

> Crop rotation: wheat-soybean (W/S) and

> Soil organic carbon (SOC) (g C kg<sup>-1</sup>)

> Potentially mineralizable C (PMC) (%)

through long-term incubations

> Soil microbial biomass carbon (SMB-C) (%)

> Recalcitrant C (%): SOC -(SMB-C + PMC)

83.6

organic carbon (SOC).

on soil C fractions.

Treatments

site.

## Soil Carbon Pools under Different Management Practices in Kansas

Karina P. Fabrizzi, Charles W. Rice, Alan Schlegel, Dallas Peterson, and Carlyle Thompson, Kansas State University

## **Results and Discussion**

At Hays, SMB-C was higher at 0-N rate than at 67-N at 0-15 cm (P<0.05), but we did not observed a significant tillage effect. Potentially mineralizable C was similar between tillage at 0-N, but it was significantly greater under NT than CT and RT at 67-N treatments (P<0.05). Recalcitrant C was significant lower under NT at 67-N treatments (P<0.05).

2.9% 16.1% 80.8% 81.09 SMB-C NT 0-N CT 0-N RT 0-N Recalcitrant C SOC: 10.1 SOC: 10.1 SOC: 10.9 2.5% 2.7% 17 2% 72 8% RT 67-N NT 67-N CT 67-N SOC: 11.1 SOC: 11.7 SOC: 11.4 Figure 1. SMB-C, PMC and recalcitrant C at 0-15 cm in Hays.

In Tribune, SMB-C in CT and SOD was similar and significantly greater than NT and RT systems (P<0.05). CT had a significantly lower PMC and greater recalcitrant C (P<0.05) compared with the other tillage systems and native prairie sod.







- > In general, NT increased soil organic C.
- > Soil microbial biomass was a small fraction of the total C pool and was more variable in response to treatments.
- > Potentially mineralizable C and the recalcitrant C appears to be the fractions most affected by tillage treatments. In general, NT increased PMC.
- > The recalcitrant C fraction tend to be lower with NT.

## **Acknowledgments**

This material is based upon work supported by the Cooperative State Research, Education, and Extension Service, U.S. Department of Agriculture, Under Agreement No. 2001-38700-11092.



Soil