
Introduction
• Accurate monitoring methods are needed if soil C sequestration is to be an 

accepted method for offsetting CO2 emissions.

• It is not practical to estimate soil C dynamics using measurements only 
(Izaurralde et al., 1998).

• Both simulation and measurement-based estimates are uncertain.

• Stochastic simulation can help quantify uncertainty (Ogle et al., 2003) .

Hypothesis
• The Extended Kalman Filter (ExKF; Graham, 2002) data assimilation algorithm 

is useful to combine stochastic simulations and measurements to improve 
accuracy and reduce uncertainty in soil C estimates.

Materials and Methods

• Propagation equations for the expected values (   and ) and covariances (P) 
of the random variables of the model are derived using properties of random 
variables (see below).

Test Site
• The ExKF algorithm was tested for estimation 

of soil C in 12 fields in Wa, Ghana over a 20-
year period.

Stochastic Simulation
• For this test, we used a simple one-pool model 

(Jones, 2004) for the soil C in the top 20 cm of 
soil (see below)

• M (kg C ha-1) is the soil C in a field and R (yr-1) 
is the decomposition rate parameter for M.

• Both M and R are random variables.
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Results and Discussion

Summary
The ExKF combined measurements with stochastic simulation to improve 
aggregate estimates of soil C content.

The ‘smart’ sampling scheme, which sampled a 3 different fields each year, 
each within the range of correlation of other fields, provided good results with 
with 75% fewer measurements than the most intensive measurement scenario.

Areas for further research include:

application of the ExKF with more realistic soil C models,

application with real long-term spatiotemporal datasets, and

estimation of changes in soil C at a site.    
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M R

• The ExKF is based on Bayes’ Rule of conditional probability. The sketch 
above illustrates the effect of using the ExKF to condition an estimate of a 
random variable with a measurement.
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Experiment Details
• Geostatistical analysis with soil C 

measurements from 2003 showed 
spatial correlation up to 53 m.

• A semivariogram model developed 
from the 2003 data was used with 
the Unconditional Sequential 
Gaussian Simulation (Goovaerts, 
1997) algorithm to initialize 
expected values of M, R and their 
covariance matrix P.   

• The ExKF was tested using a generated 20-year true and 
measurement time series of soil C in each field.

• In order to test the updating capability of the ExKF, the expected value 
of R was initialized with biased-low values.

• Three measurement scenarios were investigated:

No filter (no measurement updates)

12 of 12 fields measured annually

3 of 12 fields (rotating) measured annually 

The expected value in the 
No-Filter case diverges from 
the ‘true’ value.

The 3 of 12 rotating-
measurement case 
compares well with the 12 of 
12 measurement case with 
75% fewer measurements.

Measurements in the 3 of 12 
rotating case were chosen so 
all fields were within the 
correlation range of at least 
one measurement.
The effect of the ExKF in reducing the estimate variance can be seen from the 
graphs above and below.

Further work is needed with actual long-term spatiotemporal datasets and more 
realistic soil C models.

Another area that needs further research is the estimation of actual change in soil 
C, rather than accurate simulation of the soil C content at a given time.
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Carbon Covariance Surface – 3:12 measurements rotating
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September 2004 QuickBird Image of 12 test fields 
near Wa, Ghana.

ExKF Details
• When a measurement is made, the vector containing values of     and     for 

each field (     ), which are conditioned on previous measurements, is updated 
to      .

• The main factors affecting the updated states are the differences between 
measured and simulated states, expressed in the V vector, the variance and 
covariance of estimates, expressed in the K matrix, and the measurement 
variance matrix, W.

• Spatial covariance between model states is critical for the ExKF to update 
states at unmeasured locations. 
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